
Theorem Proving using Lazy Proof ExpliationCorma Flanagan1, Rajeev Joshi1, Xinming Ou2, and James B. Saxe11 Systems Researh Center, HP Labs, Palo Alto, CA2 Prineton University, Prineton, NJAbstratMany veri�ation problems redue to proving the validity of formulasinvolving both propositional onnetives and domain-spei� funtionsand prediates. This paper presents an expliating theorem prover ar-hiteture that leverages reent advanes in propositional SAT solvingand the development of proof-generating domain-spei� proedures. Wedesribe the implementation of an expliating prover based on this arhi-teture that supports propositional logi, the theory of equality with un-interpreted funtion symbols, linear arithmeti, and the theory of arrays.We have applied this prover to a range of proessor, ahe oherene, andtimed automata veri�ation problems. We present experimental resultson the performane of the prover, and on the performane impat ofimportant design deisions in our implementation.1 IntrodutionIn 1979, Nelson and Oppen [18℄ introdued a sheme for ombining a olletion ofdeision proedures for disjoint underlying theories, together with baktrakingsearh, to obtain a theorem prover for formulas inorporating both proposi-tional onnetives and arbitrarily mixed appliation of funtions and prediatesof the various theories. In this paper, we propose a prover arhiteture basedon a new style of interation between propositional and theory-spei� deisionproedures. Unlike the traditional Nelson-Oppen method, our arhiteture sep-arates the propositional searh from the work done by deision proedures forthe underlying theories. It thereby allows us to gain eÆieny by taking advan-tage of reent advanes in propositional SAT solving and the development ofproof-generating deision proedures.In the rest of this introdution, we illustrate the key ideas of our approahby means of an example. In later setions, we desribe our arhiteture in moredetail, report on our experiene with a prototype implementation, disuss variousdesign hoies that impat performane, and ompare our work with relatedapproahes.1.1 Our ApproahTo simplify the exposition, we onsider the problem of determining whether agiven formula, alled the query, is satis�able (this is the dual of the theorem-

proving problem). For instane, onsider heking the satis�ability of:(a = b) ^ (:(f(a) = f(b)) _ b =) ^ :(f(a) = f()) (1)Our approah uses a propositional SAT solver together with suitable deisionproedures. For this example, we need only one theory-spei� deision proe-dure, for the theory of equality with uninterpreted funtion symbols (EUF).A more useful prover would employ a larger olletion of theories, ooperatingaording to the Nelson-Oppen equality-sharing protool.We translate the given problem into a purely propositional formula by intro-duing propositional variables v1 : : : v4, alled proxies, as shown below:(v1z }| {a = b) ^ (:(v2z }| {f(a) = f(b)) _ v3z }| {b =) ^ :(v4z }| {f(a) = f()) (2)Replaing eah atomi formula in the query with the orresponding proposi-tional proxy, we obtain the propositional formula:(v1) ^ (:v2 _ v3) ^ (:v4) (3)We refer to the atomi formula assoiated with a proxy as its interpretation;thus a = b is the interpretation of v1.Formula (3) is an abstration of query (1) in the sense that, given any satis-fying assignment for (1) we an obtain a satisfying assignment for (3) simply byassigning to eah proxy the truth value of its interpretation. Clearly, however,the onverse does not hold in general, sine the truth values are assigned tothe proxies without onsidering their interpretations. Our strategy is to use theunderlying theories to produe a sequene of suessively stronger propositionalabstrations until either (a) the propositional abstration beomes unsatis�able(in whih ase the original query was itself unsatis�able), or (b) the abstrationremains satis�able even when the proxies are interpreted as atomi formulas (inwhih ase we have a satisfying assignment for the query).We start by invoking a propositional SAT solver to solve the initial propo-sitional abstration (3). Suppose that our solver returns with the satisfying as-signment that assigns true to v1 and false to v2; v3 and v4. Next, we assert theassoiated interpretations of these proxies to the underlying EUF theory, whihdetets that they are ontraditory.At this point, a onventional Nelson-Oppen prover like Simplify [11℄ wouldbaktrak and searh for a di�erent satisfying assignment for (3), perhaps omingup with the assignment in whih v1 and v3 are assigned true, while v2 and v4are assigned false. This assignment would again be found inonsistent withEUF, and so on. Note, however, that a = b and :(f(a) = f(b)) are mutuallyinonsistent by themselves. Thus, there is no point in onsidering any furtherassignments in whih v1 is assigned true and v2 is assigned false.To exploit this observation, we depart from the onventional approah andassume the existene of a deision proedure for EUF that, given a onjuntionof inonsistent literals, is apable of produing a proof of the inonsisteny.

Returning to our example, when the interpretations of the proxies are assertedto the EUF proedure, it reports the inonsisteny of a = b and :(f(a) = f(b))by expliating the following \proof", whih is an instane of the ongrueneaxiom, v1z }| {a = b) v2z }| {f(a) = f(b)We use this proof to re�ne our propositional abstration by adding the additionallause (:v1 _ v2), obtaining(v1) ^ (:v2 _ v3) ^ (:v4) ^ (:v1 _ v2) (4)Note that addition of this \expliated proof" to the propositional abstrationallows the SAT solver to refute the SAT assignment using purely propositionalreasoning. Next, we invoke the SAT solver on (4). This time, it �nds the satisfyingassignment in whih v1; v2; v3 are assigned true, and v4 is assigned false. Asbefore, we assert the assoiated interpretations to the underlying EUF theory.The theory �nds the assignment to be inonsistent, and expliates the followingproof of inonsisteny:(v1z }| {a = b ^ v3z }| {b =)) v4z }| {f(a) = f()Using this proof, we re�ne our propositional abstration to(v1) ^ (:v2 _ v3) ^ (:v4) ^ (:v1 _ v2) ^ (:v1 _ :v3 _ v4) (5)The SAT solver �nds that (5) is now unsatis�able, so we onlude that theoriginal query (1) was itself unsatis�able.1.2 MotivationThe ideas desribed in this paper grew out of experiene with the design anduse of the theorem prover \Simplify" [11℄, whih is based on the traditionalNelson-Oppen design. During our use of Simplify, we observed two serious per-formane problems. First, the baktraking searh algorithm that we used forpropositional inferene had been far surpassed by reently developed fast SATsolvers [19, 22, 13℄. Seond, if the prover was in the midst of deeply nested asesplits when it deteted an inonsisteny with an underlying theory, the bak-traking searh engine gained no information about whih tentative truth as-signments (besides the most reent) atually ontributed to the inonsisteny.Consequently the deision proedure was often fored repeatedly to redisoverthe same inonsisteny in later branhes of the searh, whih di�ered only inthe truth assignments to other, irrelevant atomi formulas. This led to our ex-ploration of proof-generating deision proedures; suh proedures essentiallyidentify useful theory-spei� fats, whih are then projeted into the proposi-tional domain. We thus leverage the eÆieny of modern SAT solvers, whih

an reuse the expliated lauses muh more eÆiently than the theory-spei�deision proedure ould regenerate them.Our expliated lauses resemble the onit lauses generated by modernSAT solvers suh as GRASP [19℄, SATO [22℄, and Cha� [13, 23℄, in that (i) afterbeing generated one they an be reused many times, and (ii) they are gen-erated on the basis of their demonstrated utility in refuting some attemptedsatisfying assignment. The di�erene is that our expliated lauses are theory-spei� logial onsequenes of the interpretations of the proxy variables, andthey are disovered by the theory-spei� deision proedures. In ontrast, aSAT solver's onit lauses are propositional onsequenes of the given lauses,and they are disovered by analyzing ontraditions deteted during booleanonstraint propagation in the SAT solver.We are by no means the only ones to notie that modern SAT solvers anbe usefully integrated into the Nelson-Oppen design. Similar ideas have beenreently proposed by Barrett, Dill and Stump [4℄ and by de Moura and Rue� [10℄.Our approah di�ers from their work in a number of ritial design deisions. Thispaper disusses these design deisions and evaluates their performane impat.2 Arhiteture2.1 TerminologyWe use terminology that is standard in the literature. A term is a variable oran appliation of a funtion to terms. Thus, x, x + 3 and f(x; y) are all terms.An atomi formula is a propositional variable or an appliation of a prediatesymbol to some terms. Thus, x+3 < 5 and f(x) = f(y) are atomi formulae. Aliteral is either an atomi formula or its negation, and a lause is a disjuntionof literals. A monome is a onjuntion of literals in whih no atomi formulais both aÆrmed and negated. We identify a monome M with the partial truthassignment that assigns true to atomi formulae that are onjunts of M andassigns false to atomi formulae whose negations are onjunts of M .The task of a satis�er is to deide whether an input formula, alled a query,is satis�able for a given set of underlying theories. The underlying theories mayassume partiular semantis for some prediate and funtion symbols, suh as >and +, while leaving others uninterpreted. A satisfying assignment for a queryis a monome that is onsistent with the underlying theories of the satis�er andentails the query by propositional inferene alone (i.e., treating all syntatiallydistint atomi formulae as if they were distint propositional variables).2.2 ArhitetureFigure 1 skethes the main algorithm for our satis�er. As shown, given a queryF , we introdue proxies for the atomi formulae of F , along with a mapping �relating these proxies to the atomi formulae. This results in the SAT problem��1(F). We invoke the SAT solver on ��1(F) by invoking SAT-solve, whih is

Input: A query FOutput: A monome satisfying F , or null, indiating that F is unsatis�ablefuntion satisfy(Formula F) : Monome fwhile (true) falloate proxy propositional variables for atomi formulae in F , andreate mapping � from proxies to atomi formulae;TruthAssignment A := SAT-solve(��1(F));if (A = null) f ��1(F) is unsatis�able, hene so is Freturn null;g else fMonome M := � (A);Formula E := hek (M);if (E = null) f E is satis�able, and so is Freturn � (A);g else f deision proedure found M inonsistent and expliated EF := F ^ E;gggg Fig. 1. A satis�ability algorithm using proof expliationexpeted to return either null (if the given SAT problem is unsatis�able) or asatisfying TruthAssignment A. If SAT-solve returns null, it means ��1(F) isunsatis�able, so we an dedue that F itself was unsatis�able, and we are done.Otherwise, we use the satisfying assignment A provided by the SAT solver, andinvoke the proedure hek whih determines if the monomeM is onsistent withthe underlying theories. If hek returns null, it means thatM is onsistent withthe underlying theories, so we have obtained a satisfying assignment to our origi-nal F and we are done. Otherwise, hek determines that M is inonsistent withthe underlying theories, and returns a proof E of the inonsisteny. We updatethe query F by onjoining E to it, and ontinue by mapping the query using� and reinvoking the SAT solver as desribed above. We assume that E is (1)entailed by the axioms of the underlying theories, and (2) propositionally entailsthe negation of the given monome M . Condition (2) suÆes to show that thealgorithm terminates, sine it ensures that at eah step, we stritly strengthenthe query. Condition (1) suÆes to show soundness, so that if the updated querybeomes propositionally unsatis�able, we may onlude that the original querywas unsatis�able. Thus, we an view the iterative proess as transfering infor-mation from the underlying theories into the propositional domain. Eventuallywe either strengthen the query until it beomes propositionally unsatis�able, orthe SAT solver �nds a satisfying assignment whose interpretation is onsistentwith the underlying theories.

3 Implementation and EvaluationTo explore the performane bene�ts of generating expliated lauses, we imple-mented a satis�er, alled Verifun, based on the arhiteture of Figure 1. Verifunonsists of approximately 10,500 lines of Java and around 800 lines of C ode.The bulk of the Java ode implements expliating deision proedures for EUF,rational linear arithmeti, and the theory of arrays. The deision proedure forEUF is based on the E-graph data struture proposed by Nelson and Oppen [17℄,whih we adapted to expliate proofs of transitivity and ongruene. The dei-sion proedure for linear arithmeti is based on a variation [16℄ of the Simplexalgorithm that we have modi�ed to support proof expliation. Finally, the dei-sion proedure for arrays uses pattern mathing to produe ground instanes ofselet and store axioms. The C ode implements the interfae to the SAT solver.The Verifun implementation extends the basi expliating arhiteture ofFigure 1 with a number of improvements, whih we desribe below.3.1 Online vs. O�ine Propositional SAT SolvingThe arhiteture of Figure 1 uses an o�ine SAT solver, whih is reinvokedfrom srath eah time the SAT problem is extended with additional expliatedlauses. Eah reinvoation is likely to repeat muh of the work of the previous in-voation. To avoid this performane bottlenek, Verifun uses a ustomized onlinevariant of the zCha� SAT solver [13℄. After reporting a satisfying assignment,this online SAT solver aepts a set of additional lauses and then ontinues itsbaktraking searh from the point at whih that assignment was found, andthus avoids reexamining the portion of the searh spae that has already beenrefuted.To illustrate the bene�t of online SAT solving, Figure 2(a) ompares theperformane of two versions of Verifun, whih use online and o�ine versionsof zCha�, respetively. We used a benhmark suite of 38 proessor and aheoherene veri�ation problems provided by the UCLID group at CMU [6℄. Theseproblems are expressed in a logi that inludes equality, uninterpreted funtions,simple ounter arithmeti (inrement and derement operations), and the usualordering over the integers. All experiments in this paper were performed on amahine with dual 1GHz Pentium III proessors and 1GB of RAM, runningRedhat Linux 7.1. Sine Verifun is single-threaded, it uses just one of the twoproessors. We onsider an invoation of the prover to timeout if it took morethan 1000 seonds, ran out of memory, or otherwise rashed. As expeted, theonline SAT solver signi�antly improves the performane of Verifun and enablesit to terminate on more of the benhmark problems. Note that the the `x' in thetop right of of this graph (and in subsequent graphs) overs several benhmarksthat timed out under both Verifun on�gurations.3.2 Partial vs. Complete Truth AssignmentsAs desribed in Setion 2.2, the SAT solution A is onverted to a monomeM thatentails the query by propositional reasoning (although M may not be onsistent

0.1 1.0 10.0 100.0 1000.0

Online SAT solver

0.1

1.0

10.0

100.0

1000.0

O
ff

lin
e

SA
T

 s
ol

ve
r

timeout

0.1 1.0 10.0 100.0 1000.0

Partial truth assignment

0.1

1.0

10.0

100.0

1000.0

C
om

pl
et

e
tr

ut
h

as
si

gn
m

en
t

timeout

0.1 1.0 10.0 100.0 1000.0

Proxy reuse

0.1

1.0

10.0

100.0

1000.0

N
o

pr
ox

y
re

us
e

timeout

(a) O�ine vs online (b) Complete vs partial () No reuse vs reuseSAT solver truth assignments of proxies
0.1 1.0 10.0 100.0 1000.0

Lazy explication of transitivity

0.1

1.0

10.0

100.0

1000.0

E
ag

er
 e

xp
lic

at
io

n
of

 t
ra

ns
it

iv
it

y

timeout

0.1 1.0 10.0 100.0 1000.0

Fine-grain explication

0.1

1.0

10.0

100.0

1000.0

C
oa

rs
e-

gr
ai

n
ex

pl
ic

at
io

n

timeout

0.1 1.0 10.0 100.0 1000.0

No new proxy hiding

0.1

1.0

10.0

100.0

1000.0

N
ew

 p
ro

xy
 h

id
in

g

timeout

(d) Eager vs lazy (e) Fine vs oarse (f) New proxy hidingtransitivity expliation vs no hidingFig. 2. Sattergraph of runtime (in seonds) omparing versions of Verifun on theUCLID benhmarks. Exept where labeled otherwise, Verifun used the online SATsolver, partial truth assignments, proxy reuse, lazy transitivity, �ne-grained expliation,and no hiding of new proxy variables.with the underlying theories). By default, M is omplete, in that it assoiates atruth value with every atomi formula in the query. An important optimizationis to ompute from M a minimal sub-monome M 0 that still entails the query.Sine any monome extending M 0 also entails the query, M is an extension ofM 0 that assigns arbitrary truth values to atomi formulas not mentioned in M 0,whih in turn may ause hek to expliate lauses that are not very useful.Therefore, we instead apply hek to the partial monome or truth assignmentM 0. Figure 2(b) illustrates the bene�t of this optimization.3.3 Proxy ReuseSine standard SAT solvers require their input to be in onjuntive normal form(CNF), Verifun �rst onverts the given query to CNF. To avoid exponentialblow-up, Verifun introdues additional proxy variables for ertain subformulasin the query, as neessary. If a partiular subformula appears multiple timesin the query, an important optimization is to reuse the same proxy variable forthat subformula, instead of introduing a new proxy variable for eah ourrene.Figure 2() illustrates the substantial performane bene�t of this optimization.

3.4 Eager TransitivityBy default, Verifun expliates lauses in a lazy manner, in response to satisfyingassignments produed by the SAT solver. An alternative approah proposed byVelev [8℄ and others [6, 7, 12℄ is to perform this expliation eagerly , before runningthe SAT solver. The relative performane of the two approahes is unlear, inpart beause lazy expliation generates fewer lauses, but invokes the SAT solvermultiple times.As a �rst step in omparing the two approahes, we extended Verifun to per-form eager expliation of lauses related to transitivity of equality. These lausesare generated by maintaining a graph whose verties are the set of all terms, andwhose edges are the set of all equalities that appear (negated or not) in the ur-rent query. At eah step, before the SAT solver is invoked, we add edges to makethe graph hordal, using the well-known linear-time algorithm of Tarjan andYannakakis [21℄. Next, we enumerate all triangles in this graph that ontain atleast one newly added edge. For eah suh triangle, we generate the three possi-ble instanes of the transitivity axiom. Figure 2(d) illustrates the e�et of eagerexpliation on Verifun's running time on the UCLID benhmarks. Interestingly,although eager expliation signi�antly redues the number of iterations thoughthe main loop of Verifun, often by an order of magnitude, the timing resultsindiate that eager expliation does not produe a onsistent improvement inVerifun's performane over lazy expliation.3.5 Granularity of ExpliationWhen the hek deision proedure detets an inonsisteny, there is generallya hoie about whih lauses to expliate. To illustrate this idea, suppose thedeision proedure is given the following inonsistent olletion of literals:a = b ; b = ; f(a) 6= f()When the deision proedure detets this inonsisteny, it ould follow theoarse-grain strategy of expliating this inonsisteny using the single lause:a = b ^ b =) f(a) = f()A seond strategy is �ne-grain expliation, whereby the deision proedureexpliates the proof of inonsisteny using separate instanes of the transitivityand ongruene axioms: a = b ^ b =) a = a =) f(a) = f()Fine-grained expliation produes more and smaller expliated lauses thanoarse-grained expliation. This is likely to result in the SAT solver doing moreunit propagation, but may allow the SAT solver to refute more of the searhspae without reinvoking the deision proedure. In the example above, the

lause a =) f(a) = f() might help prune a part of the searh spae wherea = holds, even if the transitivity hain a = b = does not hold. By omparison,the oarse-grained expliated lause would not have been useful.Figure 2(e) ompares the performane of oarse-grained verses �ne-grainedexpliation. On several benhmarks, the oarse-grained strategy times out be-ause it generates a very large number of lauses, where eah lause is veryspei� and only refutes a small portion of the searh spae. Fine-grained expli-ation terminates more often, but is sometimes slower when it does terminate.We onjeture this slowdown is beause �ne-grained expliation produeslauses ontaining atomi formulas (suh as a = in the example above) that donot our in the original query, whih auses the SAT solver to assign truth valuesto these new atomi formulas. Thus, subsequent expliation may be neessaryto refute inonsistent assignments to the new atomi formulas.To avoid this problem, we extended Verifun to hide the truth assignmentto these new atomi formulas from the deision proedure. In partiular, whenthe SAT solver returns a satisfying assignment, Verifun passes to the deisionproedure only the truth assignments for the original atomi formulas, and notfor the new atomi formulas. Figure 2(f) shows that this hiding new proxiesstrategy produes a signi�ant performane improvement, without introduingthe problems assoiated with the oarse-grained strategy.3.6 Comparison to Other Theorem ProversWe next ompare the performane of Verifun with three omparable provers. Fig-ure 3(a) ompares Verifun with the Simplify theorem prover [11℄ on the UCLIDbenhmarks, and shows that Verifun sales muh better to large problems. Inseveral ases, Verifun is more than two orders of magnitude faster than Simplify,due to its use of expliated lauses and a fast SAT solver.Figure 3(b) ompares Verifun to the Cooperating Validity Cheker (CVC) [4℄on the UCLID benhmarks. The results show that Verifun performs better thanCVC on these benhmarks, perhaps beause CVC uses oarse-grained explia-tion, whih our experiments suggest is worse than Verifun's �ne-grained expli-ation.Figure 3() and (d) ompare Verifun with the Stanford Validity Cheker(SVC) [3℄. Figure 3() uses the UCLID benhmarks plus an additional benh-mark provided by Velev that uses EUF and the theory of arrays. Figure 2 (d) usesthe Math-SAT postoÆe suite3 of 41 timed automata veri�ation problems [2,1℄. Interestingly, SVC performs better than Verifun on the UCLID benhmarks,but worse on the postoÆe benhmarks, perhaps beause these tools have beentuned for di�erent problem domains. In addition, SVC is a relatively mature andstable prover written in C, whereas Verifun is a prototype written in Java, andstill has signi�ant opportunities for further optimization. For example, our dei-sion proedures are urrently non-baktraking and therefore repeat work aross3 We have not been able to run either Simplify or CVC on the postoÆe benhmarks,due to inompatible formats.

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

Si
m

pl
if

y

timeout

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

C
V

C

timeout

(a) Verifun vs Simplify on UCLID (b) Verifun vs CVC on UCLID
0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

SV
C

timeout

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

SV
C

timeout

() Verifun vs SVC on UCLID and Velev (d) Verifun vs SVC on postoÆeFig. 3. Sattergraph of runtime (in seonds) omparing Verifun with (a) Simplify, (b)CVC, and () SVC on the UCLID benhmarks, and (d) omparing Verifun with SVCon the postoÆe benhmarks. Verifun used the online SAT solver, lazy transitivity,�ne-grained expliation, new proxy hiding, partial truth assignments, and proxy reuse.invoations. In most ases, a large perentage of Verifun's total running timeis spent inside these deision proedures. We expet that baktraking deisionproedures would signi�antly improve Verifun's performane.Math-SAT [2, 1℄ performs extremely well on the postoÆe benhmarks, partlybeause these benhmarks inlude hints that Math-SAT uses to diret the searhperformed by the SAT solver. Verifun annot urrently exploit suh hints, butits performane is superior to Math-SAT if these hints are not provided. Inpartiular, on a 700MHz Pentium III with 1GB of RAM, Math-SAT is unableto solve any of the 5 largest problems within an hour, whereas Verifun an solvethe largest one in 26 minutes.4 Related WorkThe idea of theorem proving by solving a sequene of inrementally growingSAT problems ours as early as the 1960 Davis and Putnam paper [9℄. Howevertheir algorithm simply enumerated all instantiations of universally quanti�edformulas in inreasing order of some omplexity measure, testing ever largersets of instantiations for propositional onsisteny with the initial query. Whiletheir prover was, in priniple, omplete for �rst-order prediate alulus, it wasunlikely to omplete any proof requiring quanti�ed variables to be instantiated

with large terms before getting overwhelmed with numerous simpler but irrele-vant instanes.The idea of adding support for proof expliation to deision proedures hasbeen explored by George Neula in the ontext of his work on \proof-arrying-ode"(PCC) [14, 15℄. However, in PCC, proof-generation is used with a di�erentpurpose, viz., to allow ode reeivers to verify the orretness of ode with re-spet to a safety poliy. Our onerns, on the other hand, are di�erent: we areinterested in proof-generation in order to produe a suÆient set of lauses torule out satisfying assignments that are inonsistent with the underlying theory.In partiular, the quality of the expliated proofs is not as ruial in the ontextof PCC.More similar in nature to our work is the Cooperating Validity Cheker(CVC) [4℄. CVC also uses expliated lauses in order to ontrol the booleansearh. However, the CVC approah di�ers from Verifun's in some ruial ways:{ CVC invokes its deision proedures inrementally as the SAT solver assignstruth values to propositional variables.{ Expliation in CVC is oarser-grained than in Verifun.{ CVC generates proofs as new fats are inferred. On the other hand, ourprover merely reords suÆient information in the data strutures so thatproofs an be generated if needed.Reent work by de Moura and Rue� [10℄ is losely related to ours, in that theytoo propose an arhiteture in whih the deision proedures are invoked lazily,after the SAT solver has produed a omplete satisfying assignment. They notethe impat of proof-expliating deision proedures in pruning the searh spaemore quikly. They also ontrast the lazy deision proedure invoation approahwith the eager invoation approah of provers like CVC. Our work di�ers fromtheirs in that we have foused on studying the performane impat of variousdesign hoies within the spae of lazy invoation of deision proedures.Another system employing a form of lazy expliation is Math-SAT [2℄. Thissystem is speialized to the theory of linear arithmeti, for whih it inorporatesnot only a full deision proedure but three partial deision proedures. Eahdeision proedure is invoked only when all weaker ones have failed to refute apotential satisfying assignment.Verifun produes propositional projetions of theory-spei� fats lazily, onthe basis of its atual use of those fats in refuting proposed satisfying assign-ments. An alternative approah is to identify at the outset and projet to thepropositional domain all theory-spei� fats that might possibly be needed fortesting a partiular query. This \eager" approah has been applied by Bryant,German, and Velev [5℄ to a logi of EUF and arrays, and extended by Bryant,Lahiri, and Seshia [7℄ to inlude ounter arithmeti. Strihman [20℄ has investi-gated the eager projetion to SAT for Presburger and linear arithmeti. Whenemploying the eager approah it is important not to expliate the exat theory-spei� onstraint on the atomi formulas in the query, but to identify a setof theory-spei� fats guaranteed to be suÆient for deiding a query withoutbeing exessively large [8℄. Where this has been possible, the eager approah

has been impressively suessful. For riher theories (in partiular for problemsinvolving quanti�ation), it is unlear whether it will be possible to identify andprojet all neessary theory-spei� fats at the outset without also inludingirrelevant fats that swamp the SAT solver.5 ConlusionOur experiene suggests that lazy expliation is a promising strategy to harnessreent developments in SAT solving and proof-generating deision proedures.Our omparisions of Verifun and Simplify indiate that this approah is moreeÆient than the traditional Nelson-Oppen approah. Comparisions with otherapproahes like SVC, though promising (as shown in Figure 3()), are not asonlusive. This is partly beause several obvious optimizations (suh as bak-traking theories) are not yet implemented in Verifun.One advantage of our approah over that of CVC is that there is less depen-dene on the SAT solver, whih makes it easier to replae that SAT solver withthe urrent world hampion. A potential advantage of lazy expliation is that itis easier to extend to additional theories than the eager expliation approahesof Bryant et al. and Strihman. In partiular, we have reently extended ourimplementation to handle quanti�ed formulas. By omparison, it is unlear howto extend eager expliation to handle quanti�ation.AknowledgmentsWe are grateful to Sanjit Seshia for providing us with the UCLID benhmarksin SVC and CVC formats, to Alessandro Cimatti for helping us understand theformat of the Math-SAT postoÆe problems, and to Rustan Leino for helpfulomments on this paper.Referenes1. Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilow-iz, and Roberto Sebastiani. Input �les for Math-SAT ase studies.http://www.dit.unitn.it/~rseba/Mathsat.html.2. Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowiz, andRoberto Sebastiani. A SAT based approah for solving formulas over Booleanand linear mathematial propositions. In Proeedings of the 18th Conferene onAutomated Dedution, July 2002.3. Clark W. Barrett, David L. Dill, and Jeremy Levitt. Validity heking for ombi-nations of theories with equality. In Proeedings of Formal Methods In Computer-Aided Design, pages 187{201, November 1996.4. Clark W. Barrett, David L. Dill, and Aaron Stump. Cheking satis�ability of�rst-order formulas by inremental translation to SAT. In Proeedings of the 14thInternational Conferene on Computer Aided Veri�ation, volume 2404 of LetureNotes in Computer Siene, pages 236{249. Springer, July 2002.5. Randal E. Bryant, Steven German, and Miroslav N. Velev. Exploiting positiveequality in a logi of equality with uninterpreted funtions. In Proeedings 11th

International Conferene on Computer Aided Veri�ation, volume 1633 of LetureNotes in Computer Siene, pages 470{482. Springer, July 1999.6. Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deiding CLU logiformulas via Boolean and pseudo-Boolean enodings. In Proeedings of the FirstInternational Workshop on Constraints in Formal Veri�ation, September 2002.7. Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and ver-ifying systems using a logi of ounter arithmeti with lambda expressions anduninterpreted funtions. In Proeedings of the 14th International Conferene onComputer Aided Veri�ation, volume 2404 of Leture Notes in Computer Siene,pages 78{92. Springer, July 2002.8. Randal E. Bryant and Miroslav N. Velev. Boolean satis�ability with transitiv-ity onstraints. In Proeedings 12th International Conferene on Computer AidedVeri�ation, pages 85{98, July 2000.9. M. Davis and H. Putnam. A omputing proedure for quanti�ation theory. JACM,7:201{215, 1960.10. Leonardo de Moura and Harald Ruess. Lemmas on demand for satis�ability solvers.In Proeedings of the Fifth International Symposium on the Theory and Applia-tions of Satis�ability Testing, May 2002.11. David Detlefs, Greg Nelson, and James B. Saxe. A theorem-prover for programheking. Tehnial report, HP Systems Researh Center, 2003. In preparation.12. ShuvenduK. Lahiri, Sanjit A. Seshia, and Randal E. Bryant. Modeling and veri�a-tion of out-of-order miroproessors in UCLID. In Proeedings of the InternationalConferene on Formal Methods in Computer Aided Design, volume 2517 of LetureNotes in Computer Siene, pages 142{159. Springer, November 2002.13. Matthew W. Moskewiz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and SharadMalik. Cha�: Engineering an eÆient SAT solver. In Proeedings of the 39th DesignAutomation Conferene, June 2001.14. George C. Neula. Compiling with Proofs. PhD thesis, Carnegie-Mellon University,1998. Also available as CMU Computer Siene Tehnial Report CMU-CS-98-154.15. George C. Neula and Peter Lee. Proof generation in the Touhstone theoremprover. In Proeedings of the 17th International Conferene on Automated Dedu-tion, pages 25{44, June 2000.16. Charles Gregory Nelson. Tehniques for Program Veri�ation. PhD thesis, StanfordUniversity, 1979. A revised version of this thesis was published as Xerox PARCComputer Siene Laboratory Researh Report CSL-81-10.17. Greg Nelson and Derek C. Oppen. Fast deision proedures based on ongruenelosure. JACM, 27(2), Otober 1979.18. Greg Nelson and Derek C. Oppen. Simpli�ation by ooperating deision proe-dures. ACM TOPLAS, 1(2):245{257, Otober 1979.19. Jo~ao Marques Silva and Karem A. Sakallah. GRASP: A searh algorithm forpropositional satis�ability. IEEE Transations on Computers, 48(5), May 1999.20. Ofer Strihman. On solving Presburger and linear arithmeti with SAT. In Pro-eedings Formal Methods in Computer-Aided Design, pages 160{170, 2002.21. Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to testhordality of graphs, test ayliity of hypergraphs, and seletively redue aylihypergraphs. SIAM Journal of Computing, 13(3):566{579, August 1984.22. Hantao Zhang. SATO: An eÆient propositional prover. In Proeedings of the 14thInternational Conferene on Automated Dedution, pages 272{275, 1997.23. Lintao Zhang, Conor F. Madigan, Matthew W. Moskewiz, and Sharad Malik.EÆient onit driven learning in a Boolean satis�ability solver. In Proeedingsof the International Conferene on Computer Aided Design, November 2001.

