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eton University, Prin
eton, NJAbstra
tMany veri�
ation problems redu
e to proving the validity of formulasinvolving both propositional 
onne
tives and domain-spe
i�
 fun
tionsand predi
ates. This paper presents an expli
ating theorem prover ar-
hite
ture that leverages re
ent advan
es in propositional SAT solvingand the development of proof-generating domain-spe
i�
 pro
edures. Wedes
ribe the implementation of an expli
ating prover based on this ar
hi-te
ture that supports propositional logi
, the theory of equality with un-interpreted fun
tion symbols, linear arithmeti
, and the theory of arrays.We have applied this prover to a range of pro
essor, 
a
he 
oheren
e, andtimed automata veri�
ation problems. We present experimental resultson the performan
e of the prover, and on the performan
e impa
t ofimportant design de
isions in our implementation.1 Introdu
tionIn 1979, Nelson and Oppen [18℄ introdu
ed a s
heme for 
ombining a 
olle
tion ofde
ision pro
edures for disjoint underlying theories, together with ba
ktra
kingsear
h, to obtain a theorem prover for formulas in
orporating both proposi-tional 
onne
tives and arbitrarily mixed appli
ation of fun
tions and predi
atesof the various theories. In this paper, we propose a prover ar
hite
ture basedon a new style of intera
tion between propositional and theory-spe
i�
 de
isionpro
edures. Unlike the traditional Nelson-Oppen method, our ar
hite
ture sep-arates the propositional sear
h from the work done by de
ision pro
edures forthe underlying theories. It thereby allows us to gain eÆ
ien
y by taking advan-tage of re
ent advan
es in propositional SAT solving and the development ofproof-generating de
ision pro
edures.In the rest of this introdu
tion, we illustrate the key ideas of our approa
hby means of an example. In later se
tions, we des
ribe our ar
hite
ture in moredetail, report on our experien
e with a prototype implementation, dis
uss variousdesign 
hoi
es that impa
t performan
e, and 
ompare our work with relatedapproa
hes.1.1 Our Approa
hTo simplify the exposition, we 
onsider the problem of determining whether agiven formula, 
alled the query, is satis�able (this is the dual of the theorem-



proving problem). For instan
e, 
onsider 
he
king the satis�ability of:(a = b) ^ (:(f(a) = f(b)) _ b = 
) ^ :(f(a) = f(
)) (1)Our approa
h uses a propositional SAT solver together with suitable de
isionpro
edures. For this example, we need only one theory-spe
i�
 de
ision pro
e-dure, for the theory of equality with uninterpreted fun
tion symbols (EUF).A more useful prover would employ a larger 
olle
tion of theories, 
ooperatinga

ording to the Nelson-Oppen equality-sharing proto
ol.We translate the given problem into a purely propositional formula by intro-du
ing propositional variables v1 : : : v4, 
alled proxies, as shown below:( v1z }| {a = b) ^ ( :( v2z }| {f(a) = f(b)) _ v3z }| {b = 
) ^ :( v4z }| {f(a) = f(
)) (2)Repla
ing ea
h atomi
 formula in the query with the 
orresponding proposi-tional proxy, we obtain the propositional formula:(v1) ^ (:v2 _ v3) ^ (:v4) (3)We refer to the atomi
 formula asso
iated with a proxy as its interpretation;thus a = b is the interpretation of v1.Formula (3) is an abstra
tion of query (1) in the sense that, given any satis-fying assignment for (1) we 
an obtain a satisfying assignment for (3) simply byassigning to ea
h proxy the truth value of its interpretation. Clearly, however,the 
onverse does not hold in general, sin
e the truth values are assigned tothe proxies without 
onsidering their interpretations. Our strategy is to use theunderlying theories to produ
e a sequen
e of su

essively stronger propositionalabstra
tions until either (a) the propositional abstra
tion be
omes unsatis�able(in whi
h 
ase the original query was itself unsatis�able), or (b) the abstra
tionremains satis�able even when the proxies are interpreted as atomi
 formulas (inwhi
h 
ase we have a satisfying assignment for the query).We start by invoking a propositional SAT solver to solve the initial propo-sitional abstra
tion (3). Suppose that our solver returns with the satisfying as-signment that assigns true to v1 and false to v2; v3 and v4. Next, we assert theasso
iated interpretations of these proxies to the underlying EUF theory, whi
hdete
ts that they are 
ontradi
tory.At this point, a 
onventional Nelson-Oppen prover like Simplify [11℄ wouldba
ktra
k and sear
h for a di�erent satisfying assignment for (3), perhaps 
omingup with the assignment in whi
h v1 and v3 are assigned true, while v2 and v4are assigned false. This assignment would again be found in
onsistent withEUF, and so on. Note, however, that a = b and :(f(a) = f(b)) are mutuallyin
onsistent by themselves. Thus, there is no point in 
onsidering any furtherassignments in whi
h v1 is assigned true and v2 is assigned false.To exploit this observation, we depart from the 
onventional approa
h andassume the existen
e of a de
ision pro
edure for EUF that, given a 
onjun
tionof in
onsistent literals, is 
apable of produ
ing a proof of the in
onsisten
y.



Returning to our example, when the interpretations of the proxies are assertedto the EUF pro
edure, it reports the in
onsisten
y of a = b and :(f(a) = f(b))by expli
ating the following \proof", whi
h is an instan
e of the 
ongruen
eaxiom, v1z }| {a = b ) v2z }| {f(a) = f(b)We use this proof to re�ne our propositional abstra
tion by adding the additional
lause (:v1 _ v2), obtaining(v1) ^ (:v2 _ v3) ^ (:v4) ^ (:v1 _ v2) (4)Note that addition of this \expli
ated proof" to the propositional abstra
tionallows the SAT solver to refute the SAT assignment using purely propositionalreasoning. Next, we invoke the SAT solver on (4). This time, it �nds the satisfyingassignment in whi
h v1; v2; v3 are assigned true, and v4 is assigned false. Asbefore, we assert the asso
iated interpretations to the underlying EUF theory.The theory �nds the assignment to be in
onsistent, and expli
ates the followingproof of in
onsisten
y:( v1z }| {a = b ^ v3z }| {b = 
) ) v4z }| {f(a) = f(
)Using this proof, we re�ne our propositional abstra
tion to(v1) ^ (:v2 _ v3) ^ (:v4) ^ (:v1 _ v2) ^ (:v1 _ :v3 _ v4) (5)The SAT solver �nds that (5) is now unsatis�able, so we 
on
lude that theoriginal query (1) was itself unsatis�able.1.2 MotivationThe ideas des
ribed in this paper grew out of experien
e with the design anduse of the theorem prover \Simplify" [11℄, whi
h is based on the traditionalNelson-Oppen design. During our use of Simplify, we observed two serious per-forman
e problems. First, the ba
ktra
king sear
h algorithm that we used forpropositional inferen
e had been far surpassed by re
ently developed fast SATsolvers [19, 22, 13℄. Se
ond, if the prover was in the midst of deeply nested 
asesplits when it dete
ted an in
onsisten
y with an underlying theory, the ba
k-tra
king sear
h engine gained no information about whi
h tentative truth as-signments (besides the most re
ent) a
tually 
ontributed to the in
onsisten
y.Consequently the de
ision pro
edure was often for
ed repeatedly to redis
overthe same in
onsisten
y in later bran
hes of the sear
h, whi
h di�ered only inthe truth assignments to other, irrelevant atomi
 formulas. This led to our ex-ploration of proof-generating de
ision pro
edures; su
h pro
edures essentiallyidentify useful theory-spe
i�
 fa
ts, whi
h are then proje
ted into the proposi-tional domain. We thus leverage the eÆ
ien
y of modern SAT solvers, whi
h




an reuse the expli
ated 
lauses mu
h more eÆ
iently than the theory-spe
i�
de
ision pro
edure 
ould regenerate them.Our expli
ated 
lauses resemble the 
on
i
t 
lauses generated by modernSAT solvers su
h as GRASP [19℄, SATO [22℄, and Cha� [13, 23℄, in that (i) afterbeing generated on
e they 
an be reused many times, and (ii) they are gen-erated on the basis of their demonstrated utility in refuting some attemptedsatisfying assignment. The di�eren
e is that our expli
ated 
lauses are theory-spe
i�
 logi
al 
onsequen
es of the interpretations of the proxy variables, andthey are dis
overed by the theory-spe
i�
 de
ision pro
edures. In 
ontrast, aSAT solver's 
on
i
t 
lauses are propositional 
onsequen
es of the given 
lauses,and they are dis
overed by analyzing 
ontradi
tions dete
ted during boolean
onstraint propagation in the SAT solver.We are by no means the only ones to noti
e that modern SAT solvers 
anbe usefully integrated into the Nelson-Oppen design. Similar ideas have beenre
ently proposed by Barrett, Dill and Stump [4℄ and by de Moura and Rue� [10℄.Our approa
h di�ers from their work in a number of 
riti
al design de
isions. Thispaper dis
usses these design de
isions and evaluates their performan
e impa
t.2 Ar
hite
ture2.1 TerminologyWe use terminology that is standard in the literature. A term is a variable oran appli
ation of a fun
tion to terms. Thus, x, x + 3 and f(x; y) are all terms.An atomi
 formula is a propositional variable or an appli
ation of a predi
atesymbol to some terms. Thus, x+3 < 5 and f(x) = f(y) are atomi
 formulae. Aliteral is either an atomi
 formula or its negation, and a 
lause is a disjun
tionof literals. A monome is a 
onjun
tion of literals in whi
h no atomi
 formulais both aÆrmed and negated. We identify a monome M with the partial truthassignment that assigns true to atomi
 formulae that are 
onjun
ts of M andassigns false to atomi
 formulae whose negations are 
onjun
ts of M .The task of a satis�er is to de
ide whether an input formula, 
alled a query,is satis�able for a given set of underlying theories. The underlying theories mayassume parti
ular semanti
s for some predi
ate and fun
tion symbols, su
h as >and +, while leaving others uninterpreted. A satisfying assignment for a queryis a monome that is 
onsistent with the underlying theories of the satis�er andentails the query by propositional inferen
e alone (i.e., treating all synta
ti
allydistin
t atomi
 formulae as if they were distin
t propositional variables).2.2 Ar
hite
tureFigure 1 sket
hes the main algorithm for our satis�er. As shown, given a queryF , we introdu
e proxies for the atomi
 formulae of F , along with a mapping �relating these proxies to the atomi
 formulae. This results in the SAT problem��1(F ). We invoke the SAT solver on ��1(F ) by invoking SAT-solve, whi
h is



Input: A query FOutput: A monome satisfying F , or null, indi
ating that F is unsatis�ablefun
tion satisfy(Formula F ) : Monome fwhile (true) fallo
ate proxy propositional variables for atomi
 formulae in F , and
reate mapping � from proxies to atomi
 formulae;TruthAssignment A := SAT-solve(��1(F ));if (A = null) f ��1(F ) is unsatis�able, hen
e so is Freturn null;g else fMonome M := � (A);Formula E := 
he
k (M);if (E = null) f E is satis�able, and so is Freturn � (A);g else f de
ision pro
edure found M in
onsistent and expli
ated EF := F ^ E;gggg Fig. 1. A satis�ability algorithm using proof expli
ationexpe
ted to return either null (if the given SAT problem is unsatis�able) or asatisfying TruthAssignment A. If SAT-solve returns null, it means ��1(F ) isunsatis�able, so we 
an dedu
e that F itself was unsatis�able, and we are done.Otherwise, we use the satisfying assignment A provided by the SAT solver, andinvoke the pro
edure 
he
k whi
h determines if the monomeM is 
onsistent withthe underlying theories. If 
he
k returns null, it means thatM is 
onsistent withthe underlying theories, so we have obtained a satisfying assignment to our origi-nal F and we are done. Otherwise, 
he
k determines that M is in
onsistent withthe underlying theories, and returns a proof E of the in
onsisten
y. We updatethe query F by 
onjoining E to it, and 
ontinue by mapping the query using� and reinvoking the SAT solver as des
ribed above. We assume that E is (1)entailed by the axioms of the underlying theories, and (2) propositionally entailsthe negation of the given monome M . Condition (2) suÆ
es to show that thealgorithm terminates, sin
e it ensures that at ea
h step, we stri
tly strengthenthe query. Condition (1) suÆ
es to show soundness, so that if the updated querybe
omes propositionally unsatis�able, we may 
on
lude that the original querywas unsatis�able. Thus, we 
an view the iterative pro
ess as transfering infor-mation from the underlying theories into the propositional domain. Eventuallywe either strengthen the query until it be
omes propositionally unsatis�able, orthe SAT solver �nds a satisfying assignment whose interpretation is 
onsistentwith the underlying theories.



3 Implementation and EvaluationTo explore the performan
e bene�ts of generating expli
ated 
lauses, we imple-mented a satis�er, 
alled Verifun, based on the ar
hite
ture of Figure 1. Verifun
onsists of approximately 10,500 lines of Java and around 800 lines of C 
ode.The bulk of the Java 
ode implements expli
ating de
ision pro
edures for EUF,rational linear arithmeti
, and the theory of arrays. The de
ision pro
edure forEUF is based on the E-graph data stru
ture proposed by Nelson and Oppen [17℄,whi
h we adapted to expli
ate proofs of transitivity and 
ongruen
e. The de
i-sion pro
edure for linear arithmeti
 is based on a variation [16℄ of the Simplexalgorithm that we have modi�ed to support proof expli
ation. Finally, the de
i-sion pro
edure for arrays uses pattern mat
hing to produ
e ground instan
es ofsele
t and store axioms. The C 
ode implements the interfa
e to the SAT solver.The Verifun implementation extends the basi
 expli
ating ar
hite
ture ofFigure 1 with a number of improvements, whi
h we des
ribe below.3.1 Online vs. O�ine Propositional SAT SolvingThe ar
hite
ture of Figure 1 uses an o�ine SAT solver, whi
h is reinvokedfrom s
rat
h ea
h time the SAT problem is extended with additional expli
ated
lauses. Ea
h reinvo
ation is likely to repeat mu
h of the work of the previous in-vo
ation. To avoid this performan
e bottlene
k, Verifun uses a 
ustomized onlinevariant of the zCha� SAT solver [13℄. After reporting a satisfying assignment,this online SAT solver a

epts a set of additional 
lauses and then 
ontinues itsba
ktra
king sear
h from the point at whi
h that assignment was found, andthus avoids reexamining the portion of the sear
h spa
e that has already beenrefuted.To illustrate the bene�t of online SAT solving, Figure 2(a) 
ompares theperforman
e of two versions of Verifun, whi
h use online and o�ine versionsof zCha�, respe
tively. We used a ben
hmark suite of 38 pro
essor and 
a
he
oheren
e veri�
ation problems provided by the UCLID group at CMU [6℄. Theseproblems are expressed in a logi
 that in
ludes equality, uninterpreted fun
tions,simple 
ounter arithmeti
 (in
rement and de
rement operations), and the usualordering over the integers. All experiments in this paper were performed on ama
hine with dual 1GHz Pentium III pro
essors and 1GB of RAM, runningRedhat Linux 7.1. Sin
e Verifun is single-threaded, it uses just one of the twopro
essors. We 
onsider an invo
ation of the prover to timeout if it took morethan 1000 se
onds, ran out of memory, or otherwise 
rashed. As expe
ted, theonline SAT solver signi�
antly improves the performan
e of Verifun and enablesit to terminate on more of the ben
hmark problems. Note that the the `x' in thetop right of of this graph (and in subsequent graphs) 
overs several ben
hmarksthat timed out under both Verifun 
on�gurations.3.2 Partial vs. Complete Truth AssignmentsAs des
ribed in Se
tion 2.2, the SAT solution A is 
onverted to a monomeM thatentails the query by propositional reasoning (although M may not be 
onsistent
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attergraph of runtime (in se
onds) 
omparing versions of Verifun on theUCLID ben
hmarks. Ex
ept where labeled otherwise, Verifun used the online SATsolver, partial truth assignments, proxy reuse, lazy transitivity, �ne-grained expli
ation,and no hiding of new proxy variables.with the underlying theories). By default, M is 
omplete, in that it asso
iates atruth value with every atomi
 formula in the query. An important optimizationis to 
ompute from M a minimal sub-monome M 0 that still entails the query.Sin
e any monome extending M 0 also entails the query, M is an extension ofM 0 that assigns arbitrary truth values to atomi
 formulas not mentioned in M 0,whi
h in turn may 
ause 
he
k to expli
ate 
lauses that are not very useful.Therefore, we instead apply 
he
k to the partial monome or truth assignmentM 0. Figure 2(b) illustrates the bene�t of this optimization.3.3 Proxy ReuseSin
e standard SAT solvers require their input to be in 
onjun
tive normal form(CNF), Verifun �rst 
onverts the given query to CNF. To avoid exponentialblow-up, Verifun introdu
es additional proxy variables for 
ertain subformulasin the query, as ne
essary. If a parti
ular subformula appears multiple timesin the query, an important optimization is to reuse the same proxy variable forthat subformula, instead of introdu
ing a new proxy variable for ea
h o

urren
e.Figure 2(
) illustrates the substantial performan
e bene�t of this optimization.



3.4 Eager TransitivityBy default, Verifun expli
ates 
lauses in a lazy manner, in response to satisfyingassignments produ
ed by the SAT solver. An alternative approa
h proposed byVelev [8℄ and others [6, 7, 12℄ is to perform this expli
ation eagerly , before runningthe SAT solver. The relative performan
e of the two approa
hes is un
lear, inpart be
ause lazy expli
ation generates fewer 
lauses, but invokes the SAT solvermultiple times.As a �rst step in 
omparing the two approa
hes, we extended Verifun to per-form eager expli
ation of 
lauses related to transitivity of equality. These 
lausesare generated by maintaining a graph whose verti
es are the set of all terms, andwhose edges are the set of all equalities that appear (negated or not) in the 
ur-rent query. At ea
h step, before the SAT solver is invoked, we add edges to makethe graph 
hordal, using the well-known linear-time algorithm of Tarjan andYannakakis [21℄. Next, we enumerate all triangles in this graph that 
ontain atleast one newly added edge. For ea
h su
h triangle, we generate the three possi-ble instan
es of the transitivity axiom. Figure 2(d) illustrates the e�e
t of eagerexpli
ation on Verifun's running time on the UCLID ben
hmarks. Interestingly,although eager expli
ation signi�
antly redu
es the number of iterations thoughthe main loop of Verifun, often by an order of magnitude, the timing resultsindi
ate that eager expli
ation does not produ
e a 
onsistent improvement inVerifun's performan
e over lazy expli
ation.3.5 Granularity of Expli
ationWhen the 
he
k de
ision pro
edure dete
ts an in
onsisten
y, there is generallya 
hoi
e about whi
h 
lauses to expli
ate. To illustrate this idea, suppose thede
ision pro
edure is given the following in
onsistent 
olle
tion of literals:a = b ; b = 
 ; f(a) 6= f(
)When the de
ision pro
edure dete
ts this in
onsisten
y, it 
ould follow the
oarse-grain strategy of expli
ating this in
onsisten
y using the single 
lause:a = b ^ b = 
 ) f(a) = f(
)A se
ond strategy is �ne-grain expli
ation, whereby the de
ision pro
edureexpli
ates the proof of in
onsisten
y using separate instan
es of the transitivityand 
ongruen
e axioms: a = b ^ b = 
 ) a = 
a = 
 ) f(a) = f(
)Fine-grained expli
ation produ
es more and smaller expli
ated 
lauses than
oarse-grained expli
ation. This is likely to result in the SAT solver doing moreunit propagation, but may allow the SAT solver to refute more of the sear
hspa
e without reinvoking the de
ision pro
edure. In the example above, the




lause a = 
 ) f(a) = f(
) might help prune a part of the sear
h spa
e wherea = 
 holds, even if the transitivity 
hain a = b = 
 does not hold. By 
omparison,the 
oarse-grained expli
ated 
lause would not have been useful.Figure 2(e) 
ompares the performan
e of 
oarse-grained verses �ne-grainedexpli
ation. On several ben
hmarks, the 
oarse-grained strategy times out be-
ause it generates a very large number of 
lauses, where ea
h 
lause is veryspe
i�
 and only refutes a small portion of the sear
h spa
e. Fine-grained expli-
ation terminates more often, but is sometimes slower when it does terminate.We 
onje
ture this slowdown is be
ause �ne-grained expli
ation produ
es
lauses 
ontaining atomi
 formulas (su
h as a = 
 in the example above) that donot o

ur in the original query, whi
h 
auses the SAT solver to assign truth valuesto these new atomi
 formulas. Thus, subsequent expli
ation may be ne
essaryto refute in
onsistent assignments to the new atomi
 formulas.To avoid this problem, we extended Verifun to hide the truth assignmentto these new atomi
 formulas from the de
ision pro
edure. In parti
ular, whenthe SAT solver returns a satisfying assignment, Verifun passes to the de
isionpro
edure only the truth assignments for the original atomi
 formulas, and notfor the new atomi
 formulas. Figure 2(f) shows that this hiding new proxiesstrategy produ
es a signi�
ant performan
e improvement, without introdu
ingthe problems asso
iated with the 
oarse-grained strategy.3.6 Comparison to Other Theorem ProversWe next 
ompare the performan
e of Verifun with three 
omparable provers. Fig-ure 3(a) 
ompares Verifun with the Simplify theorem prover [11℄ on the UCLIDben
hmarks, and shows that Verifun s
ales mu
h better to large problems. Inseveral 
ases, Verifun is more than two orders of magnitude faster than Simplify,due to its use of expli
ated 
lauses and a fast SAT solver.Figure 3(b) 
ompares Verifun to the Cooperating Validity Che
ker (CVC) [4℄on the UCLID ben
hmarks. The results show that Verifun performs better thanCVC on these ben
hmarks, perhaps be
ause CVC uses 
oarse-grained expli
a-tion, whi
h our experiments suggest is worse than Verifun's �ne-grained expli-
ation.Figure 3(
) and (d) 
ompare Verifun with the Stanford Validity Che
ker(SVC) [3℄. Figure 3(
) uses the UCLID ben
hmarks plus an additional ben
h-mark provided by Velev that uses EUF and the theory of arrays. Figure 2 (d) usesthe Math-SAT postoÆ
e suite3 of 41 timed automata veri�
ation problems [2,1℄. Interestingly, SVC performs better than Verifun on the UCLID ben
hmarks,but worse on the postoÆ
e ben
hmarks, perhaps be
ause these tools have beentuned for di�erent problem domains. In addition, SVC is a relatively mature andstable prover written in C, whereas Verifun is a prototype written in Java, andstill has signi�
ant opportunities for further optimization. For example, our de
i-sion pro
edures are 
urrently non-ba
ktra
king and therefore repeat work a
ross3 We have not been able to run either Simplify or CVC on the postoÆ
e ben
hmarks,due to in
ompatible formats.
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omparing Verifun with (a) Simplify, (b)CVC, and (
) SVC on the UCLID ben
hmarks, and (d) 
omparing Verifun with SVCon the postoÆ
e ben
hmarks. Verifun used the online SAT solver, lazy transitivity,�ne-grained expli
ation, new proxy hiding, partial truth assignments, and proxy reuse.invo
ations. In most 
ases, a large per
entage of Verifun's total running timeis spent inside these de
ision pro
edures. We expe
t that ba
ktra
king de
isionpro
edures would signi�
antly improve Verifun's performan
e.Math-SAT [2, 1℄ performs extremely well on the postoÆ
e ben
hmarks, partlybe
ause these ben
hmarks in
lude hints that Math-SAT uses to dire
t the sear
hperformed by the SAT solver. Verifun 
annot 
urrently exploit su
h hints, butits performan
e is superior to Math-SAT if these hints are not provided. Inparti
ular, on a 700MHz Pentium III with 1GB of RAM, Math-SAT is unableto solve any of the 5 largest problems within an hour, whereas Verifun 
an solvethe largest one in 26 minutes.4 Related WorkThe idea of theorem proving by solving a sequen
e of in
rementally growingSAT problems o

urs as early as the 1960 Davis and Putnam paper [9℄. Howevertheir algorithm simply enumerated all instantiations of universally quanti�edformulas in in
reasing order of some 
omplexity measure, testing ever largersets of instantiations for propositional 
onsisten
y with the initial query. Whiletheir prover was, in prin
iple, 
omplete for �rst-order predi
ate 
al
ulus, it wasunlikely to 
omplete any proof requiring quanti�ed variables to be instantiated



with large terms before getting overwhelmed with numerous simpler but irrele-vant instan
es.The idea of adding support for proof expli
ation to de
ision pro
edures hasbeen explored by George Ne
ula in the 
ontext of his work on \proof-
arrying-
ode"(PCC) [14, 15℄. However, in PCC, proof-generation is used with a di�erentpurpose, viz., to allow 
ode re
eivers to verify the 
orre
tness of 
ode with re-spe
t to a safety poli
y. Our 
on
erns, on the other hand, are di�erent: we areinterested in proof-generation in order to produ
e a suÆ
ient set of 
lauses torule out satisfying assignments that are in
onsistent with the underlying theory.In parti
ular, the quality of the expli
ated proofs is not as 
ru
ial in the 
ontextof PCC.More similar in nature to our work is the Cooperating Validity Che
ker(CVC) [4℄. CVC also uses expli
ated 
lauses in order to 
ontrol the booleansear
h. However, the CVC approa
h di�ers from Verifun's in some 
ru
ial ways:{ CVC invokes its de
ision pro
edures in
rementally as the SAT solver assignstruth values to propositional variables.{ Expli
ation in CVC is 
oarser-grained than in Verifun.{ CVC generates proofs as new fa
ts are inferred. On the other hand, ourprover merely re
ords suÆ
ient information in the data stru
tures so thatproofs 
an be generated if needed.Re
ent work by de Moura and Rue� [10℄ is 
losely related to ours, in that theytoo propose an ar
hite
ture in whi
h the de
ision pro
edures are invoked lazily,after the SAT solver has produ
ed a 
omplete satisfying assignment. They notethe impa
t of proof-expli
ating de
ision pro
edures in pruning the sear
h spa
emore qui
kly. They also 
ontrast the lazy de
ision pro
edure invo
ation approa
hwith the eager invo
ation approa
h of provers like CVC. Our work di�ers fromtheirs in that we have fo
used on studying the performan
e impa
t of variousdesign 
hoi
es within the spa
e of lazy invo
ation of de
ision pro
edures.Another system employing a form of lazy expli
ation is Math-SAT [2℄. Thissystem is spe
ialized to the theory of linear arithmeti
, for whi
h it in
orporatesnot only a full de
ision pro
edure but three partial de
ision pro
edures. Ea
hde
ision pro
edure is invoked only when all weaker ones have failed to refute apotential satisfying assignment.Verifun produ
es propositional proje
tions of theory-spe
i�
 fa
ts lazily, onthe basis of its a
tual use of those fa
ts in refuting proposed satisfying assign-ments. An alternative approa
h is to identify at the outset and proje
t to thepropositional domain all theory-spe
i�
 fa
ts that might possibly be needed fortesting a parti
ular query. This \eager" approa
h has been applied by Bryant,German, and Velev [5℄ to a logi
 of EUF and arrays, and extended by Bryant,Lahiri, and Seshia [7℄ to in
lude 
ounter arithmeti
. Stri
hman [20℄ has investi-gated the eager proje
tion to SAT for Presburger and linear arithmeti
. Whenemploying the eager approa
h it is important not to expli
ate the exa
t theory-spe
i�
 
onstraint on the atomi
 formulas in the query, but to identify a setof theory-spe
i�
 fa
ts guaranteed to be suÆ
ient for de
iding a query withoutbeing ex
essively large [8℄. Where this has been possible, the eager approa
h



has been impressively su

essful. For ri
her theories (in parti
ular for problemsinvolving quanti�
ation), it is un
lear whether it will be possible to identify andproje
t all ne
essary theory-spe
i�
 fa
ts at the outset without also in
ludingirrelevant fa
ts that swamp the SAT solver.5 Con
lusionOur experien
e suggests that lazy expli
ation is a promising strategy to harnessre
ent developments in SAT solving and proof-generating de
ision pro
edures.Our 
omparisions of Verifun and Simplify indi
ate that this approa
h is moreeÆ
ient than the traditional Nelson-Oppen approa
h. Comparisions with otherapproa
hes like SVC, though promising (as shown in Figure 3(
)), are not as
on
lusive. This is partly be
ause several obvious optimizations (su
h as ba
k-tra
king theories) are not yet implemented in Verifun.One advantage of our approa
h over that of CVC is that there is less depen-den
e on the SAT solver, whi
h makes it easier to repla
e that SAT solver withthe 
urrent world 
hampion. A potential advantage of lazy expli
ation is that itis easier to extend to additional theories than the eager expli
ation approa
hesof Bryant et al. and Stri
hman. In parti
ular, we have re
ently extended ourimplementation to handle quanti�ed formulas. By 
omparison, it is un
lear howto extend eager expli
ation to handle quanti�
ation.A
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