
Checking Cache-Coherence Protocols with TLA+

Rajeev Joshi
HP Labs, Systems Research Center, Palo Alto, CA.

Leslie Lamport
Microsoft Research, Mountain View, CA.

John Matthews
HP Labs, Cambridge Research Lab, Cambridge, MA.

Serdar Tasiran
HP Labs, Systems Research Center, Palo Alto, CA.

Mark Tuttle
HP Labs, Cambridge Research Lab, Cambridge, MA.

Yuan Yu
Microsoft Research, Mountain View, CA.

Abstract. We have a great deal of experience using the specification language
TLA+ and its model checker TLC to analyze protocols designed at Digital and
Compaq (both now part of HP). The tools and techniques we have developed
apply equally well to software and hardware designs. In this paper, we describe
our experience using TLA+ and TLC to verify cache-coherence protocols.

Keywords: TLA+, TLC, model checking, cache coherence.

1. Introduction

TLA+ is a specification language for describing and reasoning about
asynchronous, nondeterministic, concurrent systems [4, 5]. A specifica-
tion in this language is a single formula that describes a state machine
in terms of an initial condition, a next state relation, and possibly some
liveness conditions. TLA+, however, is a high-level language with the
full power of set theory, predicate logic, and temporal logic, so this
formula is a more compact and often more readable specification than
is possible in typical specification languages. TLC is a model checker
for specifications written in TLA+ [5, 7]. No model checker can handle
every specification written in a language as expressive as TLA+, but
TLC has accepted the specifications that have arisen in practice. It is
an explicit-state, on-the-fly model checker written in Java that runs on
any sequential, parallel, or distributed system with Java support.

Our experience is that TLA+ and TLC can be quite useful in an
industrial setting when applied at the right level of abstraction. This
level of abstraction, in fact, might be one of the distinguishing features

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

fmsd.tex; 8/09/2003; 10:35; p.1



2

of our work. TLA+ is best suited for reasoning about protocols, in con-
trast to other languages designed for reasoning about implementations.
We get the most value from TLA+ when it is used as early as possible
in the design phase, even as early as sketches on a white board. In our
personal use, we have used TLA+ and TLC to debug protocol ideas
in a matter of hours. This has kept us from pursuing dead ends for
days before realizing our mistakes. In our industrial applications, we
have usually entered the picture quite late in the engineering cycle,
well after the protocol has been designed, but engineers who have used
TLA+ early in the design phase report experiences similar to ours.

In this paper, we describe our experience applying TLA+ and TLC
to several cache-coherence protocols. In a shared-memory multipro-
cessor, the processors communicate by reading and writing values in
memory locations. Each processor has a cache in which it stores local
copies of these values for easy access. The memory model defines the
relationship among the values read and written by the processors. The
cache-coherence protocol is the algorithm that is responsible for imple-
menting the memory model by preserving suitable relationships among
the cached values. Cache coherence protocols are at the heart of mul-
tiprocessor designs, and aggressive optimizations for performance and
scalability make modern protocols quite tricky, so they are attractive
targets for the application of formal methods.

2. Alpha cache coherence

Our first application was to cache-coherence protocols for servers based
on two generations of the Alpha processor [1], the EV6 (Alpha 21264)
and the EV7 (Alpha 21364).

2.1. The EV6 protocol

Our first project was the EV6 cache-coherence protocol [3]. Heavy opti-
mization makes this the most complicated cache-coherence protocol any
of us has ever seen. It is a hierarchical protocol, in that the system con-
sists of four-processor nodes connected by a cross-bar switch, and the
protocol does everything it can to satisfy requests for memory locally
within a node without generating any coherence traffic on the switch.
Making verification even more difficult, the protocol actually separates
the generation of commit events used to order memory requests from
the generation of responses to requests. The protocol makes use of
this separation in two ways. First, it allows commit events sent to a
processor to bypass other messages to the processor, decreasing the

fmsd.tex; 8/09/2003; 10:35; p.2



3

amount of time the processor spends at memory barriers waiting for
prior memory requests to become ordered. Second, it can generate the
commit event well before it formulates the reply to a request, allowing
a processor to move past memory barriers even before the data sent
in response to the memory request has been determined. Even the
designers found it intuitively surprising that this optimization worked
[3]. This ability to generate early commit events depends heavily on
ordering properties of the switch, and several unusual data structures
in each node are required to make it work.

2.1.1. The coherence protocol
We began by writing a precise description of the protocol.

Our first obstacle was obtaining a coherent understanding of the
protocol. Coming in after most of the design had been completed, we
received a two-inch stack of a dozen documents describing the system,
documents written at different stages of the design and therefore some-
times inconsistent with one another. One artifact that was crucial to
understanding the design was a simulator that one designer had written
in Lisp.

Our second obstacle was the complexity of the protocol. Since some
messages had slightly different semantics in different message queues,
there were effectively over 60 kinds of messages in the system. One
of the important abstractions we made was to break those messages
down into 15 units of functionality that we called quarks, and to model
messages as sets of quarks. This dramatically simplified the description
of the protocol.

The specification wound up being 1900 lines long, which is a large
specification in a language as expressive as TLA+.

2.1.2. The Alpha memory model
We wanted to show that the cache-coherence protocol implemented
the Alpha memory model with an invariance proof, and such proofs
involve reasoning about the transitions of a state machine. The Al-
pha memory model [1], however, is defined in terms of sequences of
operations like loads and stores. We needed a definition of the mem-
ory model in terms of state transitions, so we decided to write our
own in TLA+, making a few simplifications such as considering only
loads and stores to whole cache lines. Our model is a state machine
that receives memory requests, determines return values, and gener-
ates responses. It guarantees that all memory operations appear to be
performed in some order that we call the Before order, and that all
return values are consistent with this order. The heart of the model
is a predicate called GoodExecutionOrder that describes the properties

fmsd.tex; 8/09/2003; 10:35; p.3



4

this Before order must satisfy. The entire specification is only 200 lines,
and the GoodExecutionOrder predicate is only 40 lines, demonstrating
the expressiveness and compactness of TLA+ specifications.

2.1.3. The proof
After spending months just to understand the protocol and describe
it in TLA+, it became obvious that we did not have the time or the
people to write a complete correctness proof by hand, and TLC had not
yet been written. As a way of finding bugs, we focused on writing the
protocol invariant—the invariant we would have used for a refinement
proof that the coherence protocol implements the memory model. We
wrote about 1000 lines of an informal invariant, and we focused on two
conjuncts of about 150 lines each that described what we considered to
be the most error-prone parts of the system. These conjuncts described
the sequences of messages that could appear in two message queues
separating three important data structures.

This turned out to be hard work, although it was made easier by the
fact that the specification and invariant were both written in TLA+,
in contrast to other systems where the state machine is written in one
language and the correctness properties in another. We completed the
proof for the first conjunct, which amounted to about 2000 lines of proof
with 13 nested levels of case splits. We completed an equal amount of
the proof for the second conjunct, but the chance of finding additional
errors appeared too small to justify completing the proof.

Based on our past experience writing correctness proofs for concur-
rent algorithms, we expected to find dozens of errors, but we found
only two of interest. The first was an easily-fixed error in an entry of a
table. The simplest scenario exhibiting it required four processors, two
memory locations, and over fifteen messages. We believe that this error
could have been found only by writing a proof, since simulation was
unlikely to find it (in fact, it didn’t) and the protocol’s complexity put
it beyond the ability of any model-checking technology we were aware
of at the time. The second error was a behavior of the protocol that
violated the memory model. In the end, the architects decided this was
an error in the model and not the protocol, and they revised the official
Alpha memory model accordingly.

2.2. The EV7 protocol

The level of success achieved on the EV6 protocol convinced designers
of the EV7, the next generation of the Alpha processor, to apply for-
mal methods to their protocol. By this time, the TLC model checker
had just been written, and its first major application was to the EV7

fmsd.tex; 8/09/2003; 10:35; p.4



5

protocol. In contrast to the EV6 project, a great deal of the formal
verification of the EV7 protocol was carried out by the official EV7 ver-
ification team. In fact, the TLA+ specification of the EV7 protocol was
written by one of the engineers after about eight hours of instruction
and some periodic consultation. It was about 1800 lines long.

2.2.1. Model checking
We were pleased to discover that TLC could accept the specification
as written by the engineer, without modification. The complexity of
the EV7 protocol, however, generated a huge state space. To make
the state space tractable, we ran the model checker on a configuration
having one cache line, two data values, and three processors, resulting
in six to twelve million reachable states. By adding fifteen lines to the
specification to encode some symmetry-breaking constraints, we were
able to reduce the state space to half this size. TLC could check this
configuration in three to six days on what was then a fast workstation.

Engineers running the RTL simulations of the EV7 protocol sur-
prised us by discovering two unexpected applications of TLC and the
TLA+ specification. First, they forced their RTL simulator into inter-
esting corner cases by taking traces generated by the model checker
and translating them into input stimuli for their simulator. Second,
since the next-state relation in a TLA+ specification contains explicit
assertions about which variables a transition leaves unchanged, they
added these assertions to the list for the RTL simulator to check.

Model checking found about 70 errors. Most of them were specifica-
tion errors caused by ambiguity in the English specification from which
the TLA+ specification was derived. Five were actual implementation
errors. One of these was found by TLC itself, and four were found using
TLC error traces to generate input to the RTL simulators, showing that
the RTL model violated the protocol as described by the TLA+ model.

2.2.2. The proof
Because the EV7 protocol is simpler than the EV6 protocol, we were
actually able to sketch a complete invariance proof of its correctness.
The model checker dramatically simplified the process of writing the
proof. We were able to formulate invariants and check them with TLC
on small configurations before wasting our time trying to prove them.

2.2.3. The implementation
In addition to verifying the correctness of the EV7 protocol, we are
in the process of using its TLA+ specification to verify the RTL im-
plementation [6]. While verification of the protocol itself was relatively
simple, verification of the actual implementation is complicated by a

fmsd.tex; 8/09/2003; 10:35; p.5



6

very aggressive implementation strategy. Our approach is to check that
the RTL implementation is a refinement of the TLA+ specification by
defining a refinement mapping from the RTL to the TLA+.

This mapping is used in two ways. First, we can check that traces
generated by the RTL simulator are allowed by the TLA+ specification.
For each transition in a trace, we map the pair of RTL states to a pair
of TLA+ states, and then use TLC to check that the TLA+ specification
allows a transition between these states. Second, we can keep track of
what abstract TLA+ states have been visited by the simulator, identify
interesting ones that have not been visited yet, use TLC to generate
traces to these states, and translate (as mechanically as possible) these
traces into input stimuli to force the RTL simulator into these states.

3. Itanium cache coherence

We also applied TLA+ and TLC to a cache-coherence protocol for the
Itanium processor family. This protocol relied on proprietary hardware
components from other companies, so we had to write abstract models
of their external behavior. Simply writing the protocol specification
uncovered ambiguities in the English descriptions and suggested two
small design changes.

TLC could not check the TLA+ specification of these protocols on
large enough instances to give us adequate confidence in the design.
TLC took too much time. This was because the abstract models of
the proprietary components allowed many more behaviors than any
actual implementation would exhibit, and because the design appeared
to require at least four processors to produce interesting scenarios.
However, we were able to run meaningful tests by having TLC generate
random simulations of some larger instances of the specification.

Perhaps the most interesting artifact to come out of this project is a
TLA+ specification of the Itanium memory model [2], initially intended
to serve as the correctness condition for the coherence protocol. The
Itanium model is more subtle than our version of the Alpha model. For
example, unlike the Before order in the Alpha model, there may be no
single total order on memory requests. The model allows some mem-
ory requests to be ordered using acquire/release semantics, and other
memory requests to be unordered. These unordered operations are
not required to be atomic, and different processors can see unordered
operations happen in different orders. One of our current projects is
using this formulation of the memory model to check the correctness
of hardware implementations of the memory model, and to verify the
correctness of software algorithms running on top of the memory model.

fmsd.tex; 8/09/2003; 10:35; p.6



7

4. Conclusions

On the whole, we are satisfied that TLA+ and TLC can be a valuable
pair of tools for debugging industrial-sized protocols when applied at
the right level of abstraction and at the right time in the design phase.
Designing cache-coherence protocols is a mature discipline now, and
the coherence protocols we studied were written by some of the best
protocol designers in the world, so we were not surprised that we did
not find a large number of bugs in their work. In fact, the designers
were generally pleased with the results of our analysis.

We cannot emphasize enough, however, the importance of using
these tools early in the design phase. On a number of much smaller
projects, where these tools were used early on, we have found a satisfy-
ing number of bugs. In standards work, for example, we have used TLA+

and TLC to find bugs in proposals submitted to the working group for
the PCI-X bus protocol. For a database system project, we have used
TLC to check database recovery and cache-management protocols. We
also routinely use TLC to check the concurrent algorithms we write
in the course of our own research. In processor design, EV7 engineers
working on what was to be the EV8 believed enough in the value of early
specification to write a TLA+ model of the cache-coherence protocol
before any hardware had been designed. One of these engineers, now at
Intel, reports that TLA+ and TLC are starting to become more widely
used within the former Alpha group at Intel, as well as generating
significant interest in other groups.

Given the power of formal methods early in the design phase, and
given that it is nearly impossible to participate in the early design
phase without being one of the designers, industry’s current approach
of dividing teams into the protocol design engineers and the formal
verification engineers is a serious mistake. However, the pressure of
production environments makes it difficult for designers to find time to
learn about formal verification tools. One of the most pressing problems
today, therefore, is teaching the next crop of designers to be comfortable
with formal verification tools while they are still in school. With this
background, designers might think to call on verifiers earlier in the
design cycle, and might participate more deeply in the use of the tools.

Our experience drives home the tension between language expres-
siveness and tool performance, the same tension found with program-
ming languages. TLA+ is an extremely expressive language, yet we have
seen engineers become comfortable reading TLA+ specifications after
fifteen minutes and writing them within a week. TLA+ was designed
to make specifications easy to write, but this comes at the expense of
efficient tools for TLA+. On the other hand, the tools currently demon-

fmsd.tex; 8/09/2003; 10:35; p.7



8

strating such impressive performance typically have input languages
that are too low-level for the kinds of protocol verification that we
want to do. A second pressing problem, therefore, is understanding the
extent to which the algorithms underlying these powerful tools can be
applied to higher-level languages like TLA+. One promising approach is
the use of satisfiability checking to implement bounded model checking
with TLA+.

Acknowledgements

We were assisted by many colleagues in this work. On the EV6 project:
Madhumitra Sharma helped us understand the protocol, and Paul Har-
ter helped write the proof. On the EV7 project: Joshua Scheid wrote the
specification, Homayoon Akhiani and Jonathan Nall implemented the
TLA+-to-RTL translator, Damien Doligez wrote the invariance proof,
and Scott Kreider, Scott Taylor, and Brannon Batson helped with the
RTL refinement checking. On the Itanium project: Jae Yang helped
specify the cache-coherence protocol, and Gil Neiger helped specify the
Itanium memory model. On other projects: Thomas Rodeheffer worked
on the PCI-X bus protocol, and David Lomet worked on the database
protocols. We thank three referees for their comments on this paper.

References

1. Alpha Architecture Committee. Alpha Architecture Reference Manual. Digital
Press, Boston, third edition, 1998.

2. Intel Corporation. IA-64 System Architecture, volume 2 of Intel IA-64
Architecture Software Developers Manual. Intel, July 2000.

3. Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Van Doren.
Architecture and design of AlphaServer GS320. In Proceedings of the 9th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pages 13–24, November 2000.

4. Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

5. Leslie Lamport. Specifying Systems. Addison-Wesley Publishing Company, 2002.
6. Serdar Tasiran, Yuan Yu, Brannon Batson, and Scott Kreider. Using formal

specifications to monitor and guide simulation: Verifying the cache coherence
engine of the Alpha 21364 microprocessor. In In Proceedings of the 3rd IEEE
Workshop on Microprocessor Test and Verification, Common Challenges and
Solutions, June 2002.

7. Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+
specifications. In Laurence Pierre and Thomas Kropf, editors, Correct Hardware
Design and Verification Methods, volume 1703 of Lecture Notes in Computer
Science, pages 54–66. Springer-Verlag, September 1999.

fmsd.tex; 8/09/2003; 10:35; p.8


