

The Straight-Line Automatic Programming Problem

Rajeev Joshi, Greg Nelson, Yunhong Zhou
HP Laboratories Palo Alto
HPL-2003-236
November 20th , 2003*

super-
optimization,
code
generation,
straight- line
automatic
programming
problem

The paper presents a design for the Denali-2 super-optimizer, which
will generate minimum-instruction- length machine code for
realistic machine architectures using automatic theorem-proving
technology: specifically, using E-graph matching (a technique for
pattern matching in the presence of equality information) and
boolean satisfiability solving.

The paper presents a precise definition of the underlying automatic
programming problem solved by the Denali-2 super-optimizer. It
sketches the E-graph matching phase and presents a detailed
exposition and proof of correctness of the reduction of the
automatic programming problem to the boolean satisfiability
problem.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

· 1

The Straight-Line Automatic Programming Problem
Rajeev Joshi, Greg Nelson, and Yunhong Zhou

HP Systems Research Center
November 19, 2003

Abstract. The paper presents a design for the Denali-2 super-optimizer, which will gen-
erate minimum-instruction-length machine code for realistic machine architectures using
automatic theorem-proving technology: specifically, using E-graph matching (a technique
for pattern matching in the presence of equality information) and boolean satisfiability
solving.

The paper presents a precise definition of the underlying automatic programming prob-
lem solved by the Denali-2 super-optimizer. It sketches the E-graph matching phase and
presents a detailed exposition and proof of correctness of the reduction of the automatic
programming problem to the boolean satisfiability problem.

1. INTRODUCTION

The Automatic Programming Problem is the problem of automatically finding a program
that meets a given specification. For example, the problem of finding a C program that
meets a specification given by a precondition and a postcondition is an instance of the
automatic programming problem. The “planning problems” of Artificial Intelligence are
also instances of the automatic programming problem.

In its full generality the problem is of high computational complexity in the worst case,
comparable to the decision problems of mathematical logic. But the difficulty of the prob-
lem is matched by its importance, and it has many special cases that are worthy of study. In
this paper, we define and solve a special case in which the program to be found is restricted
to be a sequential composition of primitives that model machine instructions, and in which
the specification that must be met is a multi-assignment (a sequence of expressions to be
computed together with a sequence of locations into which the values of the expressions
are to be stored). We call this special case the “straight-line automatic programming prob-
lem”. The practical significance of our solution is that it applies to the engineering problem
of generating optimal machine code for modern computing architectures, which was all but
abandoned when it was found in the 1970’s to be NP-hard.

Some writers define a problem to be “tractable” if it admits a polynomial-time solution
and “intractable” otherwise. The authors of this paper think that it is a terminological
mistake to give a technical meaning to a word with such a strong non-technical meaning,
since a word so defined cannot be used in its technical sense without conveying at least the
connotation of its ordinary sense. Readers who like the terminology might ask themselves
what they would think of defining a problem to be “significant” if it has no polynomial
time solution and “insignificant” if it does.

Terminology aside, the straight-line automatic programming problem certainly cannot
be solved in polynomial time in the worst case, since such a solution would provide an al-
gorithmic solution to the decision problem for first-order logic, and therefore to the halting
problem. Our solution reduces the problem to the first-order satisfiability problem, which
is also difficult in the worst case, but for which many heuristics have been found in practice.
In other words, we apply automatic theorem-proving methods to the problem of generat-
ing optimal code. The two methods that are used in our solution are E-graph matching and
boolean satisfiability solving. This paper sketches the role of matching, and focuses on the

2 ·
reduction of the straight-line automatic programming problem to the boolean satisfiability
problem.

The context of our work is a practical engineering effort: the Denali-2 super-optimizing
code generator project at the former HP Systems Research Center, which generates optimal
machine code for modern architectures. (Since in the context of code generation, the word
“optimizer” is universally used with the meaning of a code improver, we follow Massalin
[5] in using the word super-optimizer for an optimizing code generator that attempts to find
a true optimum by some criterion.) The Denali project’s first prototype, Denali-1, generates
cycle-optimal code for the EV6 implementation of the Alpha architecture. Our current
project, Denali-2, is designed to generate optimal code for upcoming implementations of
the Intel IA-64. Denali-1 was described in a recent PLDI paper [4], which will hereafter
be cited as “the Denali-1 paper”. The Denali-1 paper was written in a style that aimed to
acquaint the computer architecture and compiler research communities with a new kind of
code generator, with examples and high-level prose expositions of the major algorithms and
data structures. This paper, in contrast, is written in a more precise style, with definitions
and theorems and proofs. The reason for the shift of style is that as we started work on
Denali-2, we found that we needed more precision to keep our programming project from
sliding into complexity and becoming a mess. This paper has been written for publication,
but it is also a working engineering project document. We felt that our algorithm was
sufficiently simple and self-contained to publish, and that writing first and coding second
was likely to produce a better result than the other way around.

It seems unfair to submit the reader to our definitions and theorems without even a scrap
of evidence that the Denali method can be of engineering value, so we provide this one
anecdote, which is all we have space for: our Denali-1 prototype found a twenty instruc-
tion, five cycle program for byte-swapping a four byte value (see figure 5 of the Denali-1
paper). Since its output was cycle-optimal by design, we were surprised to find that it
contained an instruction whose output was overwritten by the following instruction! In-
vestigation revealed the reason: an early stage of the EV-6 pipeline fetches a group of four
instructions and enqueues each of them for one of the four ALUs on the chip. The assign-
ment of instructions to queues uses a heuristic based on the vector of four op-code types of
the fetched instructions. Once an instruction is placed in a queue, if a different queue emp-
ties before the one chosen by the heuristic, the chip will not transfer the instruction, and
one or more cycles may be wasted. In the case of the byte-swap code, eliminating the un-
usued instruction (or replacing it with a no-op) leads to one of the uncommon situations in
which the heuristic wastes cycles. Inserting the unusued instruction changes the vector of
four opcodes in a way that causes the heuristic to get a better answer, and more than makes
up for the unused instruction. Satisfiability solving may be “intractable” by definition, but
this example shows that a satisfiability solver can produce a solution that in a human being
would be considered clever, at least. The prototype takes just over a minute to generate
this sequence, during which time it solves four satisfiability problems, the largest of which
contains several thousand variables and several thousand clauses. We are confident that a
machine language programmer of ordinary experience would never come up with the code,
and that an EV-6 machine language guru would not find it as rapidly as Denali.

Because this paper is more formal and precise than the Denali-1 paper, we have more
confidence in the correctness of our algorithm in this paper than we do in the correctness
of Denali-1’s implementation. But Denali-1 is an implemented prototype, while this paper
is just an algorithm, that is, a paper design. Also, this paper makes two simplifications

· 3

that were not made in Denali-1. The first simplification is that while the inner subroutine
of Denali-1 generates code for a guarded multi-assignment, our algorithm generates code
for an ordinary multi-assignment. This simplification is rather minor, and we are confident
that our algorithm could be modified to handle guarded multi-assignments with no serious
difficulty. The second simplification is that while Denali-1 produces code that is optimal in
the sense of minimizing the number of cycles, our algorithm generates code that is minimal
only in the number of instructions, not in the number of cycles. This simplification is
rather major, and although we think that our result is a useful stepping stone to the cycle-
minimization problem that we hope to work on next, at this point we don’t really know.

Another possible metric for optimality is the number of extra registers used by a com-
putation. Perhaps the Denali method could be modified to find code that minimizes the
number of extra registers, but we won’t try to do so in this paper. In fact, to simplify our
instruction-minimizing solution, we will make the assumption that there is no shortage of
registers for holding intermediate results. Of course this assumption simplifies our algo-
rithm, and the machine language gurus to whom we aim to offer our tool tell us that the
assumption is appropriate for modern architectures.

2. STATEMENT OF THE PROBLEM TO BE SOLVED

This section presents a number of definitions, building up to a precise statement of the
problem to be solved.

2.1 S-expressions

Denali’s input is encoded as a sequence of S-expressions, where an S-expression is either
an atomic symbol or a parenthesized list of S-expressions, an atomic symbol is either a
numeral, a quoted string, or an identifier, and an identifier is either alphanumeric (like
“mem” and “r6”) or symbolic (like “+”, “*”, and “**”).

2.2 Components

The coordinate functions of the state space acted upon by a program are often called vari-
ables. They are also sometimes called components, and that is what we will call them
in this paper. An instance of the straight-line automatic programming problem includes
a list of the components that the solution program is to act upon. In the code generation
application, this is simply the list of hardware components of the target architecture. These
components are partitioned into registers and non-registers.

Typically the non-registers include a memory, but there is nothing in our algorithm that
requires this. In our examples we will assume the components include a memory named
mem and registers named r0, r1,

2.3 Machine operations and mathematical functions

Atomic symbols that denote functions are function symbols. Some, like add64 (addi-
tion modulo 264), denote functions that the machine’s ALU can compute, these are called
machine operations. Others denote functions that are not computable by the ALU, they
are called mathematical functions. Examples of mathematical functions are +, which in
Denali denotes mathematical addition, and **, which denotes exponentiation.

Two more examples of function symbols are rd and wr, where (rd a i) is element
i of the array a, and (wr a i x) is the array that has the same elements as array a
except for element i, which has the value x.

4 ·
Associated with each function symbol is a natural number called its degree, which is

simply the number of arguments to the function. For example, rd and add64 are of
degree two, and wr is of degree three.

2.4 Terms

A term is either (a) the name of a component, (b) a numeral, or (c) an expression of the
form f (t0, . . . , tm−1) where f is a function symbol of degree m and the t’s are terms. In
a term of the form (c), f is the operation and the t j ’s are the arguments. The depth of a
term of the form (a) or (b) is zero, and the depth of a term of the form (c) is one plus the
maximum depth of any t j . Denali represents terms as S-expressions in the standard way
(for example (add64 n m) denotes the application of the function add64 to the values
of n and m), but in this paper we will sometimes take the liberty of using conventional
mathematical notation, for example, writing f (x) instead of (f x), or even t + u instead
of (+ t u).

2.5 Multi-assignments and updates

A multi-assignment is an expression of the form

(c1, . . . , cn) := (t1, . . . , tn)

where the c’s are (the names of) distinct components and the t’s are terms. We remind
the reader of the multi-assignment’s meaning, operational and semantic, as expounded
in Dijkstra’s classic text [2]: Operationally, a multi-assignment specifies that the t’s be
evaluated and that each ti ’s value be stored in ci . All the evaluations are performed before
any of the updates. Semantically, the multi-assignment is a substitution of the t’s for the
c’s to be performed on a postcondition to produce the corresponding weakest precondition.
Thus the substitutions studied in mathematical logic are in fact the assignment statements
used by programmers. In this paper we call each constituent pair c i := ti of a multi-
assignment an update; ci is the target of the update and ti is the term of the update. Many
programming languages impose the requirement n = 1 on a multi-assignments, that is,
they require that each multi-assignment consist of a single update, but no treatment of
mathematical logic that we know of has ever imposed such a requirement on substitutions,
and we certainly won’t do so here.

The set of multi-assignments is semantically closed under sequential composition. For
example, x := a; (y, z) := (x, x) is semantically equivalent to (x, y, z) := (a, a, a).

To encode a multi-assignment, Denali uses a list whose first element is the assignment
symbol and whose remaining elements are the constituent updates of the multi-assignment,
where each update is encoded as a two-element list whose first element is the update target
and whose second element is the update term. For example,

(:= (x (+ x y)) (y x))

encodes

(x, y) := (x + y, x) .

The order of the updates in the encoding is insignificant.

2.6 Axioms

An axiom is a first-order formula that specifies a property of the function symbols. Denali’s
axiom syntax allows quantifiers, boolean connectives, function symbols and the equality

· 5

relation. The details of the axiom syntax are not important in this paper and will not be
described, but only suggested by examples.

Here are some example axioms:

(FORALL (x y) (= (+ x y) (+ y x)))

That is, addition is commutative.

(FORALL (a i x) (= (rd (wr a i x) i) x))

That is, if you write array element i and then read it, you read what you wrote.

(FORALL (a i j x)
(OR (= i j)

(= rd (wr a i x) j) (rd a j)))

That is, writing array element i doesn’t change any other element j .

2.7 Templates

A template is a parametrized pattern whose instances are instructions. Syntactically, a
template is an expression of the form

(TEMPLATE <paramtypes> <semantics> <syntax>)

where <paramtypes> is a parenthesized list of parameter types, <semantics> is a
multi-assignment, the semantics of the instruction, and <syntax> is a string, the syntax
for the instruction (in the case of Denali-2, it is the assembly language syntax).

In this paper, we will consider only two parameter types: reg, which denotes a register,
and immediate, which denotes an integer value encoded within the instruction itself. In
practice there are likely to be different types of registers and immediates of different bit
sizes, but we think these considerations can be addressed by straightforward modifications
to the paper.

Within <semantics> and <syntax>, parameter number k (counting from zero) is
denoted by the expression #k.

An instance of the template is obtained by choosing an actual register for each formal pa-
rameter of type reg and an actual numeral for each formal parameter of type immediate
and substituting the actuals for the formals in <semantics> to get the instruction seman-
tics and performing the same substitution in <syntax> to get the instruction syntax. To
be legal, the substitution of actuals for formals on <semantics> must produce a legal
multi-assignment, that is, a multi-assignment in which the target components are distinct.

For example, here are templates for add, load, and store instructions in a hypothetical
architecture that uses an assembly language syntax somewhat like the standard for the
IA-64:

(TEMPLATE (reg reg reg)
(:= (#2 (add64 #1 #0)))
"add #2= #1, #0")

(TEMPLATE (reg reg)
(:= #1 (rd mem #0))
"load #1= #0")

6 ·
(TEMPLATE (reg reg)

(:= (mem (wr mem #0 #1)))
"store #0= #1")

Continuing the example: The instance of the third template via the substitution (#0,#1) :=
(r0,r1) is the instruction with syntax

store r0= r1

and semantics

(:= (mem (wr mem r0 r1)))

That is, an instruction that stores register r1’s value into the memory cell addressed by
register r0.

2.8 Restrictions on the templates

An instance of the straight-line automatic programming problem includes a list of tem-
plates, which specify the instructions that are available. We impose two restrictions on
these templates: the depth-one rule and the unique occurrence rule. The utility of these
rules will become apparent in Section 2.8.2.

The depth-one rule. Each term on the right side of the multi-assignment <semantics>
of a template must be of depth one, that is, consist of the application of a function symbol
to a list of atoms (components, numerals, or template parameters).

The unique occurrence rule. Each machine operation appears exactly once among the
templates (as the operation of the term of one of the updates of the template’s semantics).

2.8.1 The rules are not as strict as they seem. These two rules may seem overly strict,
but in the presence of axioms they don’t actually rule out any useful possibilities. Here
are two examples that illustrate how the rules can be troublesome and how axioms can
circumvent the trouble: an indexed load instruction whose template might have been

(TEMPLATE
(reg immediate reg)
(:= (#2 (rd mem (add64 #0 #1))))
"load #2= #0(#1)")

and an auto-incrementing load instruction, whose template might have been

(TEMPLATE
(reg reg)
(:= (#1 (rd mem #0)) (#0 (add64 #0 1)))
"load #1= #0, 1")

The first template violates the depth-one rule. And if either template is used, the unique
occurrence rule will prohibit add64 from being used anywhere else in the templates. (And
we are bound to want to use it in the template for the add instruction!)

But since the input to Denali includes axioms, we simply define new function symbols
to work around these problems:

(FORALL (a n m) (= (iload a n m) (rd a (add64 n m))))
(TEMPLATE (reg immediate reg)

· 7

(:= (#2 (iload mem #0 #1)))
"load #2= #0(#1)")

(FORALL (n) (= (autoinc n) (add64 n 1)))
(TEMPLATE

(reg reg)
(:= (#1 (rd mem #0)) (#0 (autoinc #0)))
"load #1= #0, 1")

So these rules don’t prevent us from specifying useful architectures with the templates.
A consequence of the depth-one rule is that we cannot use what is perhaps the most

obvious template for the mov instruction. Instead, therefore, our plan is to introduce a
function symbol id, to assert id(q) = q for each scalar equivalence class q, where all
classes are scalar except those of mem and those containing (wr a i x) for non-scalar
a, and then to use the rule-abiding template

(TEMPLATE (reg reg) (:= #1 (id #0)) "mov #1= #0")

2.8.2 Three notations. We define three pieces of notation that depend on the unique
occurrence rule and the depth-one rule:

For any machine operation f :
template(f) denotes the template in which f occurs,
target(f) denotes the target of the update containing the occurrence of f in template(f),

and
srcj(f) denotes the component, numeral, or template parameter that appears as argu-

ment j (counting from zero) of the occurrence of f in template(f).
In summary, for any machine op f , the semantics of template(f) includes the update

target(f) := f (src0(f), . . . , srcm−1(f)) ,

where m is the degree of f .
This is a convenient place for one further definition: If target(f) is a component c (not

a template parameter) then f is output-restricted to c. In the architecture given by our
example templates (as in all conventional architectures), wr is output-restricted to mem.

2.8.3 Argument types. It will be important to classify the different types of arguments
to a machine operation:

In-place arguments. If src j(f) and target(f) are both #k, for some template parameter
#k of type reg, then argument j to f is an in-place argument. In the architecture given
by our example templates, the argument to autoinc is an in-place argument.

Source-restricted arguments. If srcj(f) is a component c that is not a template parame-
ter, then argument j of f is source-restricted to c. In the architecture given by our example
templates (as in all conventional architectures), rd and wr both have an argument that is
source-restricted to mem. These are the only source-restricted arguments in our examples,
but the Denali solution to the automatic programming problem allows arguments that are
source-restricted to registers. Indeed, this flexibility is essential to Denali-2’s handling of
procedure calls, since calling standards require that procedure arguments be taken from
particular registers. But we will not go further into this subject in this paper.

8 ·
Free-source arguments. If srcj(f) is a register parameter #k and target(f) is either a

fixed component or a register parameter other than #k, then argument j of f is a free-
source argument. In the architecture given by our example templates, every argument that
is not an in-place argument or source-restricted to mem is a free-source argument.

Immediate arguments. If srcj(f) is a template parameter of type immediate, then
argument j to f is an immediate argument.

Constant arguments. If srcj (f) is a numeral, then argument j of f is a constant argu-
ment. These are not common, and our example templates contain none of them.

We remark that these argument types are exhaustive and mutually exclusive.

2.9 Definition of the problem to be solved

A program P implements a multi-assignment M using temporaries L, where L is a list of
components, if executing P causes each of M’s updates to be performed and modifies no
component except the targets of M and the temporaries of L.

The input to the straight-line automatic programming problem is a list of components,
a collection of instruction templates satisfying the unique occurrence and depth-one rules,
a collection of axioms constraining the interpretation of the operators in the templates, a
budget N ≥ 0, and a multi-assignment M called the goal. The output is either a sequential
composition

P ≡ I0; · · · ; IN−1

of N instructions, each of which is an instance of one of the templates, together with a list
L of temporary registers, such that P implements M using the temporaries L, or a proof
that no such solution (P, L) exists.

Given the ability to solve this problem, minimum-instruction code is generated with a
simple search loop that tries various budgets until, for some K , a program of K instructions
is found together with a proof that no program of K − 1 instructions exists.

3. THE DENALI SOLUTION

The Denali solution to the straight-line automatic programming problem has two phases:
matching and planning. The matching phase builds a data structure called an E-graph.
The E-graph is a data structure that represents all possible ways of computing the terms
of the goal multi-assignment. The planning phase takes the E-graph and generates a CNF
satisfiability problem, which it passes to a satisfiability solver. Finally, it transforms the
satisfiability solution, if one is found, into a solution of the straight-line automatic pro-
gramming problem.

3.1 E-graphs

The main part of this paper is about the planning phase, not the matching phase, and
therefore we will not describe the implementation of the matching phase. But we will
briefly describe the E-graph that the matcher constructs, which is a crucial input to the
planning phase.

An E-graph is a term DAG together with an equivalence relation on its nodes. The
equivalence relation relates two nodes if the corresponding terms are semantically equiv-
alent (certain to be equal in the context of the program to be generated). The terms in the
DAG include all the terms in the goal multi-assignment, and all semantically equivalent

· 9

terms that can be computed by the target architecture. For example, if either of the nodes
for r1+r2 and r2+r1 are present, then both will be present, and they will be equivalent.
Two nodes with the same operator and the same number of children, say op(t 1, . . . , tm) and
op(u1, . . . , um), are congruent if, for each i , the node for t i is equivalent to the node for
ui . The equivalence relation is congruence-closed if any two congruent nodes are equiv-
alent. Since equality is a congruence, Denali always keeps the equivalence relation in the
E-graph congruence-closed. For this purpose, Denali uses the efficient congruence closure
algorithm described by Downey, Sethi and Tarjan [3].

All congruent nodes are equivalent, but not all equivalent nodes are congruent. For
example, an E-graph equivalence class might include the two equivalent, non-congruent
nodes n ∗ 2 and n + n. But any nodes of the form op(n ∗ 2) and op(n + n), if they
exist, will be both congruent and equivalent. When dealing with an E-graph instead of an
ordinary term DAG, it is best to think of a term as being represented by a class of congruent
nodes, whose general form is op(q0, . . . , qm−1), where the q’s are equivalence classes of
nodes. In this paper, we sometimes write “term” when it would be more precise to write
“congruence class”.

Denali initializes its E-graph to the term DAG containing all the terms of the updates
of the goal multi-assignment, with the identity equivalence relation, and uses the axioms
to introduce into the E-graph additional terms and equivalences between terms until even-
tually producing an E-graph that represents all possible ways of computing the terms of
the goal multi-assignment on the target architecture. For an illustrative example of the
matching phase, see the Denali-1 paper. For a detailed account of the implementation of
the matcher, see the comprehensive paper about the theorem prover Simplify [1].

For the remainder of this paper, we simply assume that an appropriate E-graph has been
constructed by the matcher.

For a term t , we write class(t) to denote the equivalence class of t in the E-graph.

3.2 The planning phase

We now come to the core of this paper, which presents a detailed design for the planning
phase of Denali-2.

Given an E-graph that represents all possible ways of computing the goal terms, the
planning phase finds an explicit sequence of machine instructions that computes them and
stores their values in the targets of the goal multi-assignment. For each equivalence class
that must be computed, the planning phase must choose a particular term in the class
whose operation can be computed by the target architecture. The planning phase must also
pack multiple updates into instructions as allowed by the architecture and as necessary to
compute the goal within the budget. Denali’s planning phase takes as input an E-graph, a
goal multi-assignment, a set of templates, and a budget. It creates a collection of boolean
unknowns, generates boolean satisfiability constraints on the unknowns that are satisfiable
exactly when the instance of the straight-line automatic programming problem is solvable
and uses an off-the-shelf satisfiability solver to determine whether these constraints are
satisfiable.

Before we describe the unknowns and the constraints on them, we present one lemma,
the “Destination Lemma”, which limits the search for an instruction sequence by exploiting
the homogeneity of the register architecture.

The lemma requires four preliminaries:
First, a sequential composition of multi-assignments I1; . . . ; In computes the term t into

10 ·
the component c if the semantics of the sequential composition includes the update c := t ,
and it computes a class Q into a component c if it computes any term in Q into c. For
example, if instruction I has semantics r1 := r1+1, then the sequence r1 := r6; I ; I ; I
computes r6+ 1 + 1 + 1 into r1.

Second, an equivalence class Q is c-homogeneous, for a component c, if every element
of Q is either the term c, or a term that is the application of an operation that is output-
restricted to c. This is a rather rare property except when c is mem, in which case essentially
all non-scalar equivalence classes can be expected to be mem-homogeneous.

Third, now and for the rest of the paper we assume that, for each scalar equivalence class
Q of the E-graph, a register temp(Q) has been selected, such that if Q and R are distinct
classes, then temp(Q) and temp(R) are distinct registers. In case it is necessary to compute
Q into a temporary register, temp(Q) is the register that will be used.

Fourth, for each class Q, we define a set of components dest(Q) as follows: If Q is c-
homogeneous for some c, then dest(Q) is the singleton {c}. Otherwise, dest(Q) is defined
by the rule that a component c is in dest(Q) if any of the following four conditions hold

(1) for some term t in Q, c := t is an update of the goal multi-assignment, or
(2) Q contains some term whose operation is output-restricted to c, or
(3) The E-graph contains some term

g(q0, . . . , qj−1, Q, qj+1, . . . , qm−1)

where argument j of g is source-restricted to c, or
(4) c is the component temp(Q).

The point of this definition is that when considering components into which q’s value might
usefully be computed, dest(q) is the set of candidates.

The Destination Lemma. If an instance of the straight-line automatic programming prob-
lem has a solution with n instructions, then it also has a solution with n instructions that
never computes any class Q into any component outside dest(Q).

Consider a solution that computes a term T into some component d not in dest(class(T)).
It cannot be that class(T) is c-homogeneous, since terms in such a class can be computed
only into c, so and in this case dest(class(T)) is {c}. So it must be that dest(class(T))

is defined by the four-condition rule. We transform the solution into an equal-length so-
lution that doesn’t compute T into a component outside dest(class(T)), by substituting
temp(class(T)) in the instruction sequence for the component d. For the instruction that
computed T into d, condition (2) implies that we can compute T into temp(class(T)) in-
stead, without violating the architecture. (If T were the application of an output-restricted
function, then d would be in dest(class(T)) contrary to supposition, so target(f), where
f is the root operator of T , must be a register parameter, and can be instantiated to
temp(class(T)) instead of to d.) For the later instructions that use the value in d, condition
(3) implies that we can use temp(class(T)) as a source instead of d, without violating the
architecture. Condition (1) implies that d was used only as a temporary, not as a goal, so
the new sequence is as good as the old. Condition (4) implies that the new sequence meets
the limitation.

In other words, the lemma says that limiting ourselves to code sequences that compute
class(T) into locations of dest(class(T)) only cannot cause us to miss an optimal instruc-
tion sequence. Since the average size of dest(Q) is small (most commonly of size one or
two), this drastically reduces the search space.

· 11

Denali doesn’t choose actual registers temp(Q) in advance. There are not enough regis-
ters to do this. Instead, Denali simply treats each syntactic expression temp(Q) as a “virtual
register”. After the code is generated, any of these virtual registers that are actually used
by the code are replaced by physical registers, and care is taken to assign distinct physical
registers to any two virtual registers whose lifetimes overlap in the generated code.

We now describe the Denali reduction of the planning portion of the straight-line auto-
matic programming problem to the boolean satisfiability problem. First we introduce the
unknowns, then the constraints on the unknowns, then show how to construct a program
from a solution to the constraints.

3.2.1 Unknowns. For each instruction index i in the range 0 ≤ i < N , each E-graph
congruence class t , and each component c in dest(class(t)), we introduce the unknown

L(i, t, c)

which will be constrained to be true if one of the updates of instruction i computes the
value of t into c by applying the operator of t to a vector of arguments that contain the
values of the arguments of t .

For each i in the range 0 ≤ i ≤ N , that is, each length of any prefix of the instruction
sequence, including the improper prefix consisting of all N instructions, each equivalence
class q, and each component c in dest(q), we introduce the unknown

H (i, q, c)

which will be constrained to be true if the value of equivalence class q is held in component
c in the state produced by executing the first i instructions of the generated code.

For each instruction index i in the range 0 ≤ i < N and each template tmpl, we intro-
duce the unknown

U(i, tmpl)

which will be constrained to be true if instruction i is an instance of template tmpl.
For each instruction index i , template tmpl, register parameter #j of tmpl, and for some

but not all registers c, we introduce the unknown

B(i, tmpl,#j, c)

which will be constrained to be true if instruction i is an instance of tmpl by a binding that
binds #j to c.

For each instruction index i , template tmpl, immediate parameter #j of tmpl, and for
some but not all numerals n appearing in the E-graph, we introduce the unknown

B(i, tmpl,#j, n)

which will be constrained to be true if instruction i is an instance of tmpl by a binding that
binds #j to n.

The c’s and n’s for which B-unknowns are required will be explained in Section 3.2.2
(in the paragraphs on the Argument and Result Constraints).

3.2.2 Constraints. In stating the constraints, we will use Dijkstra’s notation

(op dummy : range : term)

12 ·
to indicate the combination via the operation op of the values assumed by the term term
as the dummy dummy ranges over the range range. If the range is obvious from the
context, it may be omitted.

The Initialization constraint. The initialization constraint is

(AND c, q :: H (0, q, c) ⇒ c ∈ q) ,

where c ranges over all components and q ranges over all equivalence classes. This is
a conjunction of constraints each of which is of one of the two forms H (0, . . . , . . .) ⇒
TRUE or H (0, . . . , . . .) ⇒ FALSE. Those of the first form are vacuous and can be
omitted; those of the second form are negative unit clauses that prevent the satisfiability
solver from “solving” the code generation problem by postulating that useful updates have
already been performed in the initial state.

The Completion constraint. The completion constraint is that, for each update c := t of
the goal multi-assignment,

H (N, class(t), c) .

That is, the code performs each goal update within the cycle budget.

The Argument Constraints. The argument constraints ensure that if the code includes an
instruction to compute op(args), it must previously have computed args into a vector
of components whence the architecture allows the arguments of op to be fetched. Also,
these constraints ensure that the B unknowns are set to reflect the template instantiations
needed to produce instructions that read the arguments from the proper components.

There is one argument constraint for each edge in the E-graph, and its form depends on
the type of the argument represented by the edge, as follows.

For each E-graph congruence class f (q0, . . . , qm−1), for each j such that argument j to
f is an in-place argument, for each c in dest(class(f (q0, . . . , qm−1))), create the unknown
B(i, template(f), srcj(f), c) and constrain:

L(i, f (q0, . . . , qm−1), c) ⇒
H (i, qj, c) AND B(i, template(f), srcj(f), c)

That is, to compute f (q0, . . . , qm−1) into c in instruction i , an in-place argument q j must
previously have been computed into c, and the template parameter that is both src j(f) and
target(f) must be instantiated to c in instruction i .

For each E-graph congruence class t ≡ f (q0, . . . , qm−1), for each j such that argu-
ment j to f is a free-source argument, for each d in dest(class(t)), create the unknown
B(i, template(f), srcj(f), d) and constrain:

L(i, f (q0, . . . , qm−1), c) ⇒
(OR d : d ∈ dest(qj) : H (i, qj, d) AND B(i, template(f), srcj (f), d))

That is, free-source arguments must be computed before the operation that uses them, but
they can be computed into any convenient register. Without the destination lemma, the
width of the disjunction over d would be equal to the number of registers, which would
be unacceptably wide. With the optimization, we expect the average width to be just
above one. Frequently d will range over the singleton {temp(q j)}; in case qj ’s value is a
procedure argument or a goal update term (or both), the range will include a second (or
third) component.

· 13

For each instruction index i , each E-graph congruence class f (q 0, . . . , qm−1), for each
j such that argument j to f is source-restricted, constrain:

L(i, f (q0, . . . , qm−1), c) ⇒ H (i, qj, srcj(f))

That is, an argument that is source-restricted to c must be held in c before it can be used.
If argument j to f is source-restricted, then src j (f) is not a template parameter, so in this
case there is no need to create and constrain a B unknown.

For each instruction index i , each congruence class t ≡ f (q 0, . . . , qm−1), each j such
that argument j to f is an immediate argument, let n be the numeral in q j , create the
unknown B(i, template(f), src j(f), n), and constrain:

L(i, f (q0, . . . , qm−1), c) ⇒ B(i, template(f), srcj(f), n)

That is, an immediate argument can be any compile-time-constant natural number. In this
case, if qj holds no numeral, then constrain L(i, f (q0, . . . , qm−1), c) to be FALSE.

For each instruction index i , each congruence class t ≡ f (q 0, . . . , qm−1), each j such
that argument j to f is a constant argument, constrain:

L(i, f (q0, . . . , qm−1), c) ⇒ srcj (f) ∈ qj .

Each of these constraints is of the form L(...) ⇒ TRUE or L(...) ⇒ FALSE. Those of
the first form are vacuous and can be omitted. Those of the second form are negative unit
clauses that prevent the computation of f (q0, . . . , qm−1) if some argument j of f is a
constant argument that isn’t the value of q j .

The result constraint. For each instruction index i , each term t of the form f (q 0, . . . , qm−1)

such that target(f) is a register parameter #k, and each register c in dest(class(t)), create
the unknown B(i, template(f),#k, c) and constrain:

L(i, t, c) ⇒ B(i, template(f),#k, c) .

That is, to compute f (. . .) into c in instruction i , the template parameter that represents
the register into which the instruction stores f (. . .) must be instantiated to c.

The two-case hold constraint. For each i in the range 0 ≤ i ≤ N , each equivalence class
q, and each component c in dest(q), constrain:

H (i, q, c) ⇒
(OR t : t ∈ q : L(i − 1, t, c))

OR (H (i − 1, q, c) AND (AND u :: ¬L(i − 1, u, c)))

That is, a component holds the value of a class after instruction i −1 only if that instruction
computed one of the class’s terms into the component, or the component already held the
required value before the instruction and the instruction did not overwrite the value. In the
second conjunct of the second disjunct of the consequent of the implication, the dummy u
ranges over all terms of the E-graph (although, without change of meaning, we can omit
the terms in q).

The issue constraints. The issue constraints guarantee that for each i , the set of L(i, t, c)
variables that are assigned true by the satisfiability solver specify a collection of updates
that actually can all be performed by some instruction allowed by the templates. They
connect the L unknowns to the U and B unknowns.

14 ·
The first part of the issue constraint is that, for each instruction index i , each congruence

class t ≡ f (q0, . . . , qm−1), and each component c in dest(class(t))):

L(i, t, c) ⇒ U(i, template(f))) .

That is, an instruction can apply an operation only if it is an instance of the template of the
operation.

The second part of the issue constraint is:

(AND i :: (atMost1 tmpl :: U(i, tmpl)))

in which i ranges over instruction indexes, tmpl ranges over all templates, and in which we
use the notation (atMost1 dummy : range : term) to specify that as the dummy dummy
ranges over the range range, the boolean term term is true at most once. That is, each
instruction must be an instance of one single template.

It would take quadratically many clauses to encode atMost1 exactly in CNF, but a pos-
itive occurence can be encoded in linearly many clauses by introducing linearly many
auxiliary variables. We will take care to use the construct in positive positions only.

The third part of the issue constraint is

(AND i, tmpl, k :: (atMost1 x :: B(i, tmpl,#k, x)))

where i ranges over instruction indexes and tmpl, k, and x range over all values such that
B(i, tmpl,#k, x) is defined.

That is, in any one template instantiation, no formal parameter can be bound to two
different actual parameters. The solver cannot satisfy this constraint by falsifying all the B
unknowns, because the appropriate case of the argument constraint forced the appropriate
B unknown to be true when an operation was applied to an argument, and the appropriate
case of the result constraint forced one of the B unknowns to be true when a result was
computed by an instruction into a register.

3.2.3 Constructing the program from a satisfiability solution. We now describe how
to construct a program from a solution to the boolean satisfiability constraints listed above.

Let s be a solution to the constraints. We write s |= b to indicate that the boolean
condition b is true in the solution s. We construct a program from s with a simple loop.

The loop relies on the procedure GetSource, where GetSource(i, j, t, c) finds and returns
the source of argument j to the operation of the term t whose value will be stored into c as
one of the updates of instruction i of the solution. The source of an immediate argument is
the numeral denoting the argument’s value, the source of any other kind of argument is the
component that holds the argument’s value in the pre-state of instruction i . A more precise
specification and implementation for GetSource are presented in Figure 1.

We leave it to the reader to check that GetSource’s implementation satisfies its specifi-
cation.

The loop that constructs the solution is called the Solution Loop. It is easily coded using
GetSource, as shown in Figure 2.

For each i from 0 to N − 1, the Solution Loop generates instruction i of the solution
program by setting the variable tmpl to the template of which instruction i is an instance
and setting the variable θ to the substitution of actuals for template parameters by which
instruction i instantiates tmpl. Having done this, the loop simply emits the instruction
θ(syntax(tmpl)).

· 15

res := GetSource(i, j, t, c)

specification:

requires s |= L(i, t, c)
Let t be f (q0, . . . , qm−1). Then GetSource(i, j, t, c)
ensures that the return value res satisfies these five conditions:

(0) res is a component or a numeral
(1) If arg j to f is source-restricted to c, then res is c.
(2) if res is a component, then s |= H (i, qj , res)
(3) if res is a numeral, then res ∈ qj

(4) if srcj (f) is a template parameter,
then s |= B(i, template(f), srcj (f), res)

implementation:

if arg j of f is source-restricted to c then
res := c

elseif arg j of f is the constant numeral n then
res := n

elseif arg j to f is a free-source argument then
By the free-source case of the argument constraint,
some register d in dest(class(t)) exists
such that s |= H (i, qj , d) and B(i, template(f), srcj (f), d).
Pick any such d and set res := d .

elseif arg j to f is an in-place argument then
set res := c

elseif arg j to f is an immediate argument then
res := the numeral in qj

end

Fig. 1. The subroutine used by the solution loop to determine the source of a given argument of a given update of
a given instruction of the solution.

Setting tmpl is easy: the loop sets it to template(f) for the operation f of any term t
for which s |= L(i, t, c) for some c. For any such t , the first case of the issue constraint
implies s |= U(i, template(f)), and the second case of the issue constraint implies that
for any i , at most one unknown U(i, tmpl) is true in s. Therefore, the different c, t pairs
enumerated for i all lead to the same setting of tmpl. That is, all of the updates scheduled
for instruction i are applications of machine operations that have the same template.

To set θ , the Solution Loop initializes θ to be the empty substitution and updates θ [#k] :=
cj whenever instruction i contains a template parameter #k which appears as argument j
of one of the terms of an update of the instruction, and cj is the source of the corresponding
actual parameter. (Where “source” is defined as in the description of GetSource.) In this
case, GetSource postcondition (4) implies that s |= B(i, template(f), src j(f), cj). And the
third part of the issue constraint allows s |= B(i, template(f), src j (f), cj) to be true for
only one cj for any particular triple of previous arguments to B. Consequently, the binding
introduced to θ for an argument in one c, t pair is not overwritten when working on a later
argument or on a later c, t pair. The Solution Loop also sets θ [#k] := c if instruction
i must store into register c the value of an application of a machine operation f , where

16 ·
The Solution Loop:

for i := 0 to N − 1 do
var tmpl := nil, θ := the empty substitution in

for each c, t such that s |= L(i, t, c) do
let t be f (q0, . . . , qm−1) in

tmpl := template(f);
for j := 0 to m − 1 do

var cj := GetSource(i, j, f (q0, . . . , qm−1), c) in
if srcj (f) is a template parameter then

θ [srcj (f)] := cj
end

end
end ;
if target(f) is a template parameter then

θ [target(f)] := c
end

end
end;
emit the instruction θ(the syntax of tmpl

end
end

Fig. 2. The loop that constructs a solution to the automatic programming problem from a solution s of the
satisfiability constraints.

target(f) is a register parameter #k. Because of the result constraint and part three of the
issue constraint, this update cannot interfere with other updates to θ for instruction i .

The code in Figure 2 omits two fine points. First, if after the loop on c, t , the template
tmpl is nil, then no operations have been allocated to instruction i , and we can emit a no-
op instruction. But this will never happen for the optimal budget, and it is only for the
optimal budget that there is any need to transform the satisfiability solution into a code
sequence. Second, if, after the loop on c and t , the template tmpl is defined but some
template parameter #k of tmpl remains unbound, then each such θ [#k] must be set to
some arbitrary legal actual before using θ to emit the assembly instruction. This situation
could arise, for example, if the optimal code depends on some but not all of the updates of
an instruction.

4. THE CORRECTNESS THEOREM

Theorem. For any c, q, n such that s |= H (n, q, c), the first n instructions of the program
generated by the Solution Loop terminate in a state where component c holds the common
value of all terms in q.

It is appropriate to call this the correctness theorem, since, combined with the Comple-
tion Constraint, it shows that the code generated by the Solution Loop implements the goal
multi-assignment within the budget, that is, that it is correct.

We will prove the theorem by induction on n.
Base case, n = 0. For any q, c such that s |= H (0, q, c), we have by the initialization

constraint that c is an element of q. Hence the common value of the terms in q is given by
the term c.

· 17

Induction step, n > 0. Suppose the claim is true for all q, c, and for n−1. Let q and c be
such that s |= H (n, q, c). Consider the two cases of the hold constraint whose antecedant
is H (n, q, c).

The first and more interesting case is that s |= L(n − 1, t, c) for some t in q, where t
is of the form f (q0, . . . , qm−1). Then in constructing instruction n − 1 the Solution Loop
enumerated the pair t, c, and when working on this pair, the loop called GetSource(n −
1, j, t, c) for each j from 0 to m − 1. For each of these j ’s, let x j be the value returned
by GetSource. We argue that in the prestate of instruction n − 1, each x j is a numeral
denoting the value of q j or a component that contains the value of q j . For those j where
xj is a numeral, this follows from GetSource postcondition (3). For those j where x j is
a component, this follows from postcondition (2) and induction. In either case it follows
that xj denotes the value of qj in the prestate of instruction n − 1. We also argue that
the instantiated instruction contains an update that applies f to x 0, . . . xm−1 and stores the
result in c. For each j such that src j (f) is a template parameter #k, the loop sets θ [#k]
to xj and then later uses θ to instantiate the template, so the result will be to produce an
instruction that applies f to an argument vector whose element j is x j . For any j such that
srcj(f) isn’t a template parameter, it must be a fixed component, and GetSource(i, j, t, c)
will return that component (according to GetSource postcondition (1)), hence in this case
the instantiated instruction also has x j as argument j to f . So the update in instruction
n − 1 is equivalent to c := f (x0, . . . , xm−1), and, since each x j has the value of qj and the
term t is f (q0, . . . , qm−1), this sets c to the value of t . So in the post-state of instruction
n − 1, c contains the value of t , which, since t is an element of q, is the common value of
all terms in q.

The second case of the hold constraint is that (1) s |= H (n − 1, q, c) and (2) for no u
does s |= L(n − 1, u, c). By (1) and induction, we see that after the first n − 1 instructions,
c holds the value of q. Examining the Solution Loop with (2) in mind shows that the
nth instruction (instruction n − 1) doesn’t modify c. Therefore c still holds q’s value
after instruction n − 1. These two cases complete the proof of the inductive step, which
completes the proof of the correctness theorem.

The correctness theorem (combined with the Completion constraint) shows that the sat-
isfiability constraints are strong enough, that is, that the program generated from the sat-
isfiability constraints is correct. To prove that the search over various budgets produces
a program that is optimal as well as correct, we must also prove that the satisfiability
constraints are weak enough, that is, that they are unsatisfiable only when the automatic
programming problem from which they were constructed has no solution. We believe that
we know how to prove this, but the only part of the proof we have written down is the proof
of the Destination Lemma.

5. CONCLUDING REMARKS

We have presented an algorithm for a super-optimizer that uses a simple declarative ar-
chitectural description mechanism. It is much slower than conventional optimizers, but it
really is an optimizer, not just a code improver. And we have evidence that it will be fast
enough to be of engineering utility.

It remains to be seen whether we can extend the Denali-2 algorithm to minimize the
number of cycles instead of just the number of instructions. Denali-1 did achieve this in
the case of the EV-6 superscalar architecture. This required us to include both instruction
indexes and cycle indexes among the unknowns. It was more complicated and less table-

18 ·
driven than the algorithm presented in this paper. For the EPIC architecture IA-64, the
situation is different from the super-scalar case: we need to construct a program that would
be correct if it were executed one instruction at a time, but that also meets the EPIC re-
strictions that allow groups of adjacent instructions to multi-issue. It seems, therefore, that
we will be able to reuse the initialization constraint, the argument constraints, the result
constraint, the issue constraints, and the two-case hold constraint, and that only the com-
pletion constraint is irrelevant to the cycle-minimizing setting. Instead of the completion
constraint, we will have to choose the instructions and a partition of the instructions into
groups in such a way as to minimize the number of groups that contain an instruction that
reads a register value written by a previous group, which is the fundamental limitation to
multiple issue in EPIC architectures. This doesn’t seem too daunting when put in so few
words. But (1) any actual implementation of IA-64 has additional limits on multiple issue
besides the fundamental one and (2) the devil is in the details, and we know we will face
many details before we have a working super-optimizer for the Madison implementation
of IA-64.

Not only does the Denali method produce code that is superior to that produced by “op-
timizers” that are actually code improvers, but also the Denali method is rather simple, at
least compared to serious optimizing code generators. Of course this paper has omitted
many details, but everything really fundamental to the method is explained in the 28 com-
bined pages of the Denali-1 paper and the present paper, or in the 31-page description of
E-graph matching in the comprehensive paper about the Simplify prover [1]. It is a liberat-
ing simplification to relegate all the backtracking search issues to the satisfiability solver,
where they are part of someone else’s code, not ours. We also feel that our approach pro-
duces an algorithm that is pleasantly declarative, since a large part of the program is input
to the satisfiability solver and matcher. The Denali-1 prototype is less than fifteen thousand
lines of Java.

Admittedly this accounting exaggerates Denali’s simplicity, since, by the time we im-
plement software pipelining and other conventional optimizations that we haven’t yet in-
cluded, the source code will doubtlessly grow and no longer be impressively small.

But it is nice to start with a simple foundation.

REFERENCES

David L. Detlefs and Greg Nelson and James B. Saxe. Simplify: A theorem-prover for program checking. Re-
search Report HPL-2003-148, HP Laboratories Technical Report, Palo Alto, USA, jul 2003.

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression problem. JACM, 27(4):758–

771, October 1980.
Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A goal-directed superoptimizer. In Proceedings of the

ACM 2000 Conference on Programming Language Design and Implementation, pages 304–314, june 2002.
Berlin.

Henry Massalin. Superoptimizer: a look at the shortest program. Proceedings of the second international confer-
ence on architectural support for programming languages and operating systems, pages 122–26, 1987.

