
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, # 1

Swarm Verification Techniques
Gerard J. Holzmann, Rajeev Joshi, and Alex Groce

Abstract—The range of verification problems that can be solved with logic model checking tools has increased significantly in
the last few decades. This increase in capability is based on algorithmic advances and new theoretical insights, but it has also
benefitted from the steady increase in processing speeds and main memory sizes on standard computers. The steady increase
in processing speeds, though, ended when chip-makers started redirecting their efforts to the development of multi-core
systems. For the near-term future, we can anticipate the appearance of systems with large numbers of CPU cores, but without
matching increases in clockspeeds. We will describe a model checking strategy that can allow us to leverage this trend, and
that allows us to tackle significantly larger problem sizes than before.

Index Terms—software engineering tools and techniques, logic model checking, distributed algorithms, software verification.

——————————  ——————————

1 INTRODUCTION

ike other compute intensive applications, logic model
checking techniques have benefitted from the steady
increases in CPU-speeds and memory sizes in the last

few decades, following Moore’ s prediction from 1965
[M65]. The current trend in chip development, though, is
a move away from further increases in CPU speed and is
instead focused on increasing the number of CPU cores.

To continue to scale applications of logic model check-
ing to larger problem sizes, then, we must be able to leve-
rage the availability of potentially large numbers of pro-
cessors that run at a mostly fixed and relatively low
speed. These types of systems are not only increasingly
available in the form of multi-core desktop systems, but
also more generally as networked computers or server
farms offering grid- or cloud-computing services. In this
paper we report on an application of logic model check-
ing that can build on these trends.

We focus here on the SPIN model checker [H04] as a
representative tool for solving computationally expensive
search problems, but the basic principles of parallelism
and search diversification that we explore apply also
more generally to other types of search-based processes.

The SPIN model checker can be used to locate viola-
tions of formalized correctness properties in distributed
software system designs. It does so by performing a
search in a carefully defined subset of the possible execu-
tions of the system. The details of the search process, and
the underlying theory of logic model checking, are not
important to us here. What is important are the con-
straints that we face when trying to handle larger and
larger problem sizes. In the early days of model checking,
the limited size of main memory was often the most im-
portant constraint on the size of problems that could be
handled. Today, this is no longer the case. Memory sizes

have increased dramatically, and are expected to continue
to increase for some time to come. As we will show,
though, even with the currently available memory sizes
(near 102 GB), a SPIN model checking run that would at-
tempt to use all of main memory will generally require
more time to complete than we are normally willing to
spend (i.e., days or weeks). Our goal in this study is to
develop a verification strategy that allows us to obtain
high quality results for large verification problems in mi-
nutes or hours, not days or weeks, and we want those
results to scale with increasing numbers of processing
cores or CPUs.

The paper is structured as follows. In Section 2.1 we
first look at how memory size and runtime are related for
SPIN based verifications. The basic observation is simple:
as the data-structures we build in main memory grow, so
does the time that is required to do so, until we reach a
point where we can no longer afford to spend that time.
In Section 2.2 and 2.3 we look at different strategies that
can be, or that have been, used to tackle this problem. In
Section 3 we look in detail at the different types of algo-
rithms we can use to diversify and to randomize the
model checking algorithm used in SPIN. In Section 3.1 we
first study the effect of diversification alone. In Section 3.2
we then consider the added benefit of randomizations. In
Section 4 we measure the performance of our proposed
new strategy on a range of applications, w ith added de-
tail provided in Appendix A. Section 5 shows how the
setup for a swarm search can be simplified with a small
preprocessor for the SPIN model checker, which we have
called SWARM. Section 6 discusses related work and Sec-
tion 7 concludes the paper.

2 SPIN
The time requirement of a SPIN verification run is
bounded by both the size of the reachable state space and
the size of available memory. If M bytes of memory are
available, each state requires V bytes of storage, and the
model checker on average explores S reachable states per
second, then a verification run can last no longer than

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• Gerard Holzmann and Rajeev Joshi are with the Jet Propulsion Laboratory,
California Institute of Technology, and can be reached via E-mail:
firstname.lastname@jpl.nasa.gov. Alex Groce is with the School of Electric-
al Engineering and Computer Science at Oregon State University, E-mail:
agroce@gmail.com.

Manuscript received (May 2009).

L

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

M/ (S*V) seconds. If, for example, M is 64 MB, V is 64
bytes, and S is 104 states per second, then the maximum
runtime within this memory arena is 102 seconds. The
search terminates either when all reachable states have
been visited, or when memory is exhausted. If there are
more states than can be stored in memory, the search will
remain incomplete.

2.1 Bitstate Verification
An interesting effect occurs if we switch from an exhaus-
tive verification mode, as outlined above, to a bitstate veri-
fication [H87]. In this mode, the model checker can
achieve a much higher coverage of large state spaces by
using just a few bits of memory per state stored. The pre-
cise number of bits that is used per state cannot be deter-
mined accurately in this case, since states can in fact over-
lap in their bit-positions (without ill effects on the accura-
cy of a search). Each bit-position is calculated with a hash-
function. The current version of SPIN uses three different
hash-functions by default, setting between one and three
additional bit-positions for each new state explored.

Let us assume that each new state that is explored in
this mode consumes 0.5 bytes of memory, and that the
speed of the model checker is approximately 108 states
per hour (about 3K states/ sec). Under these assumptions,
the model checker can use no more than 108 * 0.5 bytes of
memory per hour of run time, or roughly 50 MB. It is easy
to see that moving up to 8 GB then increases the maxi-
mum runtime to about a week of computation. In return,
we would cover significantly more states, but both time
and space are limited resources, so the increased coverage
of a problem space is not always achievable in practice.
To make the point perhaps more strongly, if we increase
the available memory size to 64 GB, a maximal bitstate
search could consume close to two months of computa-
tion, which is no longer a feasible strategy, no matter how
many states are explored in the process or how much
problem coverage would be improved.

We are thus faced with a dilemma. The applications
that we are trying to verify w ith model checkers are in-
creasing in size, especially when we start applying model
checkers to implementation level code, cf. [H00], [HS00],
[BR01], [VH03], [HJ04]. As state descriptors grow in size
from tens of bytes to tens of kilobytes, processing speeds
will also drop. As we observed in the introduction, these
performance differences are no longer offset by continued
CPU clock-speed increases, so they will contribute to even
longer verification times. For very large applications, a
bitstate search is typically the only feasible verification
option available to us, as it can increase the problem cov-
erage (i.e., the number of reachable states explored) by
several orders of magnitude when compared to a stan-
dard exhaustive search attempt. Exhaustive coverage for
these applications is impractical, given the enormous size
of both the state descriptors and the numbers of reachable
states. In these cases we have to find ways to perform the
best achievable approximation of an exhaustive search,
balancing both memory use and runtime constraints.
Technically, the right solution in these cases is to apply
stronger reduction and abstraction techniques to reduce

the problem size as much as possible. We are assuming
here that the best possible abstractions and restrictions
have already been applied and that the remaining prob-
lem size still significantly exceeds available resource lim-
its.

2.2 Multi-Core Verification
One strategy to combat the performance issue we have
sketched above is to tap directly into the availability of
increasing number of processing cores, communicating
via shared memory. Direct (or collaborative) multi-core
model checking algorithms are indeed available. For the
SPIN model checker we have described such an algorithm
elsewhere, [HB07]. In the best cases, the multi-core algo-
rithms can provide near linear scaling with the number of
available processing cores. Returning to our earlier exam-
ple, using eight cores in parallel, each exploring 108 states
per hour in bitstate mode, can reduce a runtime of 6.8
days on an 8 GB system to 20.4 hours, and a runtime of
two months on a 64 GB system to a week. Serious limits
remain though. Even if we assume optimistically that we
can achieve near linear scaling on large numbers of cores,
it would take about 164 cores to bring the last runtime
number down to a more reasonable runtime limit of ap-
proximately one hour.

This, then, puts an interesting spin on the problem. The
doubling interval for memory sizes is currently consider-
ably shorter than the doubling interval for the number of
CPU cores. This means that the performance gap we
sketched will continue to grow. By the time that 164
processing cores will be available on a single system, the
memory size on that system will have grown as well, and
it w ill be much larger than the 64 GB that we assumed in
our last calculation. The maximum runtime will therefore
also have increased significantly. For the amount of
memory that is available at any point in time, the number
of CPU cores that one would need to reduce the runtime
sufficiently is likely to exceed the maximum number of
cores that is available at the same point in time by a signif-
icant margin.

We would like to make use of as many resources as are
actually available to us at any point in time to get the best
possible coverage of large verification problems, but only
within a predefined time limit. It is undesirable to start a
verification run on a large machine and wonder after a
few days have passed if the run is about to complete, or
might continue for another month, w ith no indication of
the actual coverage of the search problem that has been
realized at any given point in time.

2.3 Parallelism and Search Diversity
For the remainder of this paper we will assume that there
is an upper bound on the time that is available for any
verification run, especially for large problem sizes. To
make the challenge specific, we will assume an upper-
bound of one hour of computation. With a fixed explora-
tion rate this means that we cannot use more than a few
Gigabytes of memory in an exhaustive verification and no
more than about 50 to 500 MB in a bitstate exploration.

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 3

For very large verification problems we have to ac-
cept that a time-bounded search for errors will generally
remain incomplete. It is therefore important that we do
not expend all our resources on a single search strategy.
Within the time available, we should approach the search
problem from a number of different angles – each with a
different chance of revealing errors.

Our strategy, therefore, is to leverage both parallelism
and search diversity. To study the effectiveness of candi-
date strategies to solve this problem, we will begin by
using a relatively simple model that can generate a large
state space. The model is defined in such a way that we
can easily identify every reachable state and measure the
individual and cumulative effectiveness of a range of dif-
ferent search strategies. The example, written in the speci-
fication language of SPIN, is shown in Figure 1.

The test model shown in Figure 1 defines the behavior
of eight asynchronously executing processes, each of
which executes a loop with four possible execution steps
that can be selected non-deterministically. Each process
has a predefined id number, named _pid, w ith a value
between zero and seven in this case. A t each execution
step, an arbitrary process is selected by the model check-
er, and that process will select one of its four possible ex-
ecution steps at random. We have defined the model in
such a way that each process “ owns” four bits from the
32-bit global integer variable val. A process can either set
one of these bits, or leave them zero, but each time it sets
a bit it performs a check to see if a particular 32-bit target
value was reached. The check is defined as an inline func-
tion check() that checks for a match with a predefined set
of one hundred 32-bit target values, generated with the
help of a random number generator when we defined the
model. If one of the target numbers is matched, a line is
printed. We can assess the quality of a search attempt by
counting how many of the one hundred numbers are
matched in a run. The target numbers are used here to
represent generic search targets, or in terms of logic mod-
el checking “ property violations” that we would like to

be able to locate in large search spaces.
Clearly, there will be 232 (over 4 billion) possible as-

signments to the 32-bit interger val. Each state descriptor
for the model as a whole is relatively small at 76 bytes.
Storing all reachable states exhaustively, however, would
require more than 300 GB of memory.

If, therefore, we perform a traditional search on a ma-
chine with no more than 3 GB, an exhaustive search can-
not reach more than 1% of the state space, and statistically
we may expect just one match within the set of target
numbers. A bitstate search could in principle store all
states in this amount of memory. For this example, the
model checker explores approximately 6.104 states per
second on a 2.3 GHz system, which means that exploring
the full statespace sequentially in bitstate mode would
take about 20 hours, assuming a sufficient amount of
memory is available to record all states.

We are interested, though, in the case where we are
forced to use less memory than what would suffice for a
full search – even in bitstate mode. We will, therefore,
limit the amount of memory that we make available to
the search to just 32 MB (or 0.01% of the 300 GB required
for an exhaustive search) and study what can be achieved
in terms of state coverage by exploiting parallelism and
search diversification techniques. Note that 32 MB cor-
responds to 8*32*1024*1024 = 268,435,456 bits (or 6.25% of
the 4 Billion states that are generated by our test model).
A default run of the model checker using a bitstate mem-
ory arena of 32 MB can be done as follows, using a stan-
dard Linux command shell:

$ spin –a model.pml
$ cc –DBITSTATE –o pan pan.c
$./pan –w28 |
 grep “assertion violated” |
 sort –u |
 wc –l
4

This search reaches 1.56 108 states, or about 3.6% of the

int val;

inline check() {
 if
 :: (val == -1196372740)
 || (val == -222966779)
 ...
 -> c_code { printf("assertion violated %d\n", now.val); }
 :: else /* no match */
 fi
}

active [8] proctype word()
{ /* _pid = 0..7 -- each proc owns 4 bits */

end: do
 :: d_step { val = val | 1 << ((4 * _pid) + 0); check() }
 :: d_step { val = val | 1 << ((4 * _pid) + 1); check() }
 :: d_step { val = val | 1 << ((4 * _pid) + 2); check() }
 :: d_step { val = val | 1 << ((4 * _pid) + 3); check() }
 od
}

Fig. 1. Spin model for generating all 32-bit numbers. Test model to illustrate the effect of search diversification strategies.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

232 reachable states. It locates 4% of the randomly seeded
target numbers in that search space. Which numbers are
found will depend on the search order that is used in the
model checker. Normally, this search order is irrelevant,
when all states are covered in the end. In partial or in-
complete searches though, the search order used can bias
the search in an undesirable way, by systematically al-
ways missing the same parts of the search space.

The challenge that we will consider next is to increase
the number of matches from 4% to 100%, without chang-
ing the memory constraint of 32 MB that we imposed.

3 SEARCH DIVERSIFICATION
Our strategy will be to use a range of different search me-
thods, and to run as many small verification jobs as poss-
ible in parallel, using all available CPUs (local CPU cores
and/ or networked machines). Because we will use no
more than 32 MB per search, on a multi-core system with
8 GB of memory, we could in principle run up to 256 jobs
in parallel w ithout exhausting memory.
 There are several methods that we can use to diversify
the search process in the SPIN model checker. We can
change, for instance:

• the hash-polynomials that Spin uses to compute
the bitstate locations during a search (with run-
time parameter –h),

• the number of hash-functions used, i.e., the
number of bitpositions set per state (with run-
time parameter –k), or

• the search algorithm that is used to perform the
search itself (we will consider this option in more
detail later).

As a first experiment, we can check the effect of just vary-
ing the hash-polynomials, leaving everything else fixed.
(The use of hash-polynomials in bitstate hashing is dis-
cussed in detail in [H87] and can also be found in [H04].)
Here is the result of that experiment:

$ for h in 0 5 11 17
do
 ./pan –w28 –h$h
done |
 grep “assertion violated” |
 sort –u |
 wc –l
9

We performed four runs (which can all be done in paral-
lel and therefore take no more time than a single run) and
the number of unique matches increased from 4 to 9,
more than doubling our coverage.

We can expand the search further by also varying the
number of hash functions (-k). The default number of
hash-functions in SPIN verifications is three, but we can
use other numbers as well. We can execute this set of runs
with a nested for-loop in the Bourne (or bash) shell:

$ for k in 1 2 3 4
 do
 for h in 0 5 11 17
 do
 ./pan –w$w –k$k –h$h
 done
 done |
 grep “assertion violated” |
 sort –u |
 wc –l
24

The number of unique matches increased from 9 to 24, by
performing 16 small independent searches that can still
all be executed in parallel. None of the individual
searches uses more than 32 MB of memory.

3.1 Adding Randomization
We mentioned the possibility to increase diversification
further by varying the search algorithm that we use in the
state space exploration itself. One of the methods we can
use is a randomization of the search order. In a SPIN-
based model-checker we can introduce randomization at
two specific points in the search where non-determinism
is resolved, i.e. in

• process scheduling decisions, and
• transition selections within processes.

The use of randomization has the advantage that it can
support a large variety of behaviors, merely by selecting
different seeds for the random number generator. Each
separate search can be expected to have approximately
the same runtime performance, being constrained in the
same manner by our self-imposed time and/ or memory
limits. But each search variant can also be expected to
explore a different subset of states, and locate different
types of defects (or search targets). Cumulatively, all
search variants combined, executed in parallel, can thus
outperform any one variant used separately.

To perform a proof of concept of this strategy, we per-
form a separate experiment using just the search rando-
mization technique, with a fixed hash-function and using
only single-bit hashing (–h0 –k1). We start by generating a
file w ith a hundred random numbers to be used as seeds.
For each small run we take a different number from this
file and use it to seed the random number generator.

A shell-script for performing one hundred runs using
SPIN version 5.2 or later, can be written as follows.

$ spin –a model.pml
$ cc –DBITSTATE –DT_RAND -DP_RAND \

-o pan pan.c
$ seq=1
$ while [$seq -lt 100]
 do
 r=`sed -n ${seq}p seeds`
 seq=`expr $seq + 1`
 ./pan –w28 –RS$r -k1 -h0 \
 > out_${r}
 done

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 5

$ grep “assertion violated” out_* |
 sort –u | wc –l
100

In this example all verification jobs are executed sequen-
tially on a single CPU. When using a multi-core machine
we can execute as many of these jobs in parallel as there
are available cores. In a larger network, all jobs can be
executed in parallel for a fast turn-around. A t the end of
the runs, all targets in the test model were reached. This is
especially interesting because we used only search ran-
domization to define these runs, and no other type of di-
versification. None of the runs used more than 32 MB or
0.01% of the 300 GB of memory that is required to com-
plete a standard exhaustive verification of the problem.

Clearly, the number of runs that are needed to reach a
specific level of coverage of a large search space must
increase when the amount of available memory for each
search is reduced, and vice versa when memory is in-
creased, the number of runs may be reduced. For a mem-
ory arena of 32 MB, 81 runs suffice to reach full coverage
of the example problem. If we repeat the experiment with
a memory arena that is tw ice as large (using 64 MB of
memory, corresponding to 0.02% of 300 GB), then we can
reach full coverage of the sample problem in 32 runs. If
we reduce the memory arena to 16 MB (0.005% of 300
GB) it takes 236 randomized runs to reach full coverage
for our sample problem, as summarized in Table 1.

Table 1 -- Coverage of Randomized Runs

Hash-

Array Size
(MB)

% of 300 GB Nr of runs
to reach 100%

coverage
64 0.020 32
32 0.010 81
16 0.005 236

These simple experiments suggest that we can significant-
ly increase our coverage of large search spaces by using
search diversification and randomization techniques, and
by running many small jobs in parallel. The incremental
effect of additional runs decreases, as more and more
runs are added. The maximum number of runs that can
be performed within a given time limit w ill also be
bounded by the number of available CPUs. Within the
available resource bounds, though, we can develop
search strategies that can give us the best possible results.

4 APPLICATION
The test model from Figure 1 illustrates the potential of
swarm verification techniques. No single example can of
course be representative of large search problems in gen-
eral. In this case, the test model defined a search problem
with a relatively shallow search depth of 32 steps. This
could limit the effectiveness of hash-diversification and
benefit search randomization techniques. We have there-
fore also performed an extensive series of measurements
with more typical verification models, of various sizes

and search depths.

4.1 Methodology
Our goal in performing a range more detailed measure-
ments is to study the behavior of swarm verification
when compared with standard model checking. The pri-
mary metric in the comparisons we perform is coverage:
the fraction of the reachable statespace that is reached
with each method. A second metric is resource use: the
time and memory needed to complete each type of run.
 To be able to make accurate comparisons we use models
with precisely known structure and size. The models se-
lected for these measurements are non-trivial, yet small
enough to be exhaustively verifiable.
 We can reproduce the effect of a resource constrained
system by varying the amount of memory that we make
available for each run. In each test we compare the cover-
age that is realized by a swarm run with the one realized
by single verification runs (the reference). By disabling
search options that can cause unpredictable differences in
the statespace sizes explored (e.g., partial order reduc-
tion) we can measure accurately what fraction of a state
space is visited and what fraction is missed in each test.
To show that partial order reduction in itself is not an
impediment to the coverage improvement of swarm veri-
fications, we also performed teste with it enabled (Fig 4.).
 We use five different test models. The first four models
can be exhaustively explored with standard techniques,
and serve as our main target for comparisons. The fifth
model is added as an example of a very large application
that cannot be verified fully w ith traditional means. In
this last case we can still compare the number of states
that are reached with each method, but we cannot deter-
mine what fraction of the statespace these numbers cor-
respond to. In this one case, we only know that a large
increase is in the number of states reached, within the
same resource constraints, the greater the search im-
provement that is realized will be (cf. Fig. 4).

4.2 Models
We study the following three medium and two large size
verification models:

• a data transfer protocol model, dtp,
• a file transfer verification model, pftp,
• a model of the Cambridge ring network protocol,

cambridge,
• a large model of an operating system kernel de-

veloped at Honeywell, called DEOS, and
• a very large a model of an experimental network

architecture design, called fleet.

The first three models are taken from the standard SPIN
distribution and and are frequently used in performance
measurements. The DEOS model was also discussed in
[P05] and used in [HB07]. The fleet model was provided to
us by Sanjit Sehia from UC Berkeley.

Table 2 summarizes some key characteristics of each
model. The search depth is the maximum number of steps
that the model checker takes in the depth-first search be-

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

fore reaching a previously visited state. The size of each
state is given in bytes.

Table 2 – Appl ications

In our tests of the first three (small) models, we per-

formed the verification without using partial order reduc-
tion [H04]. This allows us to eliminate a potential source
of confusion in the generally unpredictable effect of a par-
tial order reduction on statespace sizes. For each run per-
formed, we must know precisely how many states should
be reached, to allow us to accurately measure the fraction
that was effectively reached. For the pftp verification
model we also disabled several other features in the ve-
rifier, such as statement merging, dataflow optimization
and dead-variable elimination, by generating the model
checker as follows:

 $ spin –a –o1 –o2 –o3 –o4 pftp.pml

 The default optimizations normally decrease the number
of reachable states. Because our objective in these experi-
ments is to measure the fraction of all system states that is
reached by different search strategies, a somewhat larger
state count helps to make the measurements more mea-
ningful. (An alternative could have been to use slightly
larger models, that can still be exhaustively verified.)

We can calculate how much memory would be re-
quired to perform an exhaustive verification for the first
four models by multiplying the number of reachable
states with the size of each state. The first two applica-
tions, then, require approximately 64 MB of memory for
exhaustive exploration, the third application 30 MB, and
the DEOS application 13 GB. The total state space size for
the fleet model is at least 1011 states, but otherwise un-
known. This means that exhaustive exploration with tra-
ditional search algorithms would require at least 130 TB.
This last search problem, then, is representative of the
type of very large applications for which we would like to
develop improved verification strategies.

To check how many unique states are reached in
searches that necessarily remain incomplete due to re-
source constraints (imposed by the time and/ or memory
bounds we use), we perform the verifications in a mode
where the model checker records every state visited in a
binary file. For a swarm run, we combine the data from
all individual runs, to count the cumulative number of
unique states covered in all runs combined. We then
compare these totals with the number of reachable states
given in Table 2, which were obtained with standard ex-
haustive runs (as a reference), where possible.

We run a large number of small verification jobs for
each application, each using a randomly different search

strategy. Any number larger than one can illustrate the
effect. There is no preset maximum to the number of
swarm runs, but clearly, at some point there will be no
added benefit from using still larger numbers of swarm
runs. For our test models, 100 runs are sufficient to illu-
strate the gains convincingly: a notable increase in prob-
lem coverage. In practice, the optimal number of runs to
be performed will depend on the available resources: the
amount of memory and the length of time available, and
the number of cores or CPUs that is available.

For search diversification we varied the number of
hash-functions randomly between 1 and 3, and used a
different type of hash-function for each of the one hun-
dred runs. SPIN version 5.2 has one hundred different
hash-functions predefined that are selectable with the
runtime –h parameter, which sufficed for these experi-
ments. For randomization we used a different seed for the
random number generator for each run performed, using
a file w ith one hundred random numbers. For all mea-
surements on the models from Table 2 we further ran-
domly chose one of the following four pre-compiled ex-
ecutables for each run:

1. the standard depth-first search, w ith randomiza-

tion of both process scheduling decisions and tran-
sition selection decisions,

2. the same search as in 1, but w ith default process
scheduling choices reversed (using pan.c compiler
directive –DREVERSE),

3. the same search as in 1, but w ith the default transi-
tion selection choices reversed (using pan.c compi-
ler directive –DT_REVERSE)

4. the same search as in 1, but w ith both process
scheduling choices and transition selection choices
reversed by default.

Each set of one hundred runs for each application was
repeated several times, using different memory con-
straints, performing thousands of separate runs. Table 3
first shows the fraction as a percentage of all system states
that were reached for each of the first three models, for
three sample sets of 100 runs.

Figure 2 gives more detailed coverage numbers for the
pftp application, over a broader range of memory sizes. In
this case, we varied the memory size from 8KB (-w16)
through 256 KB (-w21) for the swarm runs (top, solid
curve), and from 8 KB through 4MB (-w25) for a series of
single bitstate runs (bottom, dashed curve). The detailed
results of all three sets of measurements can be found in
Tables 5 and 6 in Appendix A.

Table 3 – Coverage Using Diversi f ication

Model 64KB 128KB 256KB
dtp 99.37% 99.97% 100%
pftp 99.32% 100% 100%

cambridge 92.97% 99.50% 100%

Verification
Model

Reachable
States

Search
Depth

State
Size

dtp 394,182 334 172
pftp 439,895 5,780 144

cambridge 532,532 12,428 56
DEOS 22,452,390 177,911 584
fleet Unk. (>1011) 705 1440

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 7

Remarkably, when using just 8 KB (1.2% of what is
required for an exhaustive verification run), the swarm
run for the pftp model already reaches 63% of all system
states, while a single bitstate run in the same amount of
memory covers no more than 7.6%. Viewed differently,
by reading the chart horizontally instead of vertically, to
realize the same coverage as the 8 KB swarm run, we
would have to use 32 times as much memory with a sin-
gle bit-state run (increasing the memory arena that is
used from –w16 to –w21).

When memory is restricted, as it w ill be in our target
domain of application, this means that we can increase
coverage by about an order of magnitude by performing
a set of swarm runs. The results for the cambridge and dtp
models are similar, and not separately shown.

For the DEOS model we performed six sets of 100
runs, varying the available memory size from 512 KB to
16 MB. We compared the results with the performance of
eleven single bitstate runs, ranging from a memory arena
of 512 KB through 512 MB. Three sets of bitstate runs
were done, using three differrent settings of the number
of hash-functions (using -k1, -k2, and -k5). Finally, the
swarm runs were also peformed twice, once with all the
randomizations described before, and once without the –
DREVERSE and –DT_REVERSE options (variants 2, 3,
and 4 from our list). The results are shown in Figure 3. All
measurement detail for Figure 3 is also included in Tables
6 and 7 in Appendix A.

For this large application we used all available opti-
mizations, including partial order reduction, to reduce
the large statespace size as much as possible. To be able to
compare the cumulative effectiveness of the randomized
runs with that of a single bitstate runs in the same memo-

ry arena, we again recorded all states reached into files
and counted unique states across all swarm runs with a
post-processing step.

The time taken by each bitstate run depends on the
size of the memory arena, and thereby the maximum
number of states that is explored per run. Because all
randomized runs in a swarm set are independent, they
can all be performed in parallel, and cumulatively need to
take no longer than a single run. If we compare the cover-
age of the swarm runs with the bitstate runs, therefore, it
is important to note that each individual bitstate run takes
more and more time as we relax the memory constraints,
while moving to the right in Figures 2 and 3, making
these search alternatives less and less attractive.

In this study we are primarily interested in cases
where for a given problem size externally imposed con-
straints on memory and runtime prevent us from com-
pleting an exhaustive verification. This means that we are
most interested in the data shown on the left-hand side of
Figures 2 and 3.

If we consider the left-most point in Figure 3, we see
that the best single bitstate run realized a problem cover-
age of 4.3% (reaching 960,743 out of 22,452,390 states).
The swarm runs, completing one hundred randomly dif-
ferent runs, each using no more memory or time than the
single run, realizes coverage near 41% (reaching 9,126,333
states). Neither run realizes exhaustive coverage, but the
swarm method improved our coverage of the search
problem by nearly an order of magnitude. Adding more
runs can improve coverage further, but we can expect
that it w ill take an exponentially increasing number of
runs to continue to expand coverage in a meaningful
way.

As intended, this approach benefits from massive
parallelism, as we expect it to increasingly become avail-
able for routine use. A t –w26 the swarm runs reach 100%
coverage of the search space, using just 8 MB of memory
per run, or 0.075% of the 13GB that would be required to
complete an exhaustive verification. The best bitstate run
realizes only 50% coverage in the same memory arena
(see the top dotted line in Figure 3). The cumulative
number of states in the swarm runs can be seen to slightly
exceed the number that is reached in an exhaustive run.
This effect is caused by the use of the partial order reduc-
tion, which could cause a slightly different number of
states to be reached, depending on where truncations in
the bitstate runs occur.

One more set of measurements was performed for
the fleet model, as an example of a model that cannot be
exhaustively verified within reasonable resource con-
straints. One version of this model has a known assertion
violation that can be triggered through a manually
guided simulation in about 350 execution steps.

Fig. 2 Relative coverage realized for the pftp application by a set of
one hundred swarm runs (solid line, top), compared with single
bit-state runs (dashed line, bottom) for a range of different memo-
ry constraints (see also Appendix A).

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

 The model is over one thousand lines of text and
each system state takes 1,440 bytes to store in exhaustive
verification mode. An attempt to perform a full verifica-
tion on a 2.3 GHz machine with 32 GB of memory runs at
roughly 105 states per second, and exhausts memory in
195 seconds, w ithout reporting the error. A t this point the
search has explored 23.4 million reachable system states,
which corresponds to an unknowable fraction of the total
reachable state space. A search using -DCOLLAPSE com-
pression (a predefined lossless state compression mode in
SPIN) reaches 327.6 million states before running out of
memory after 3,320 seconds of runtime, also without re-
vealing the error. A run with the hash-compact algorithm
(a stronger, but not lossless, form of compression) runs
out of memory after 1,910 seconds and increases the cov-
erage to 537 million states. The most aggressive bitstate
run we can perform under the given constraints, using all
32 GB of memory, runs for 34 days, and explores well
over 1011 system states. None of these search attempts
succeed in locating the assertion failure.

The 34-day bitstate run finishes with a low hash-factor
(meaning that most bits in the hash-array were set), still
providing little guidance on the fraction of the reachable
state space was explored. Likely, the full reachable state
space for this problem is much larger than what can be
searched or stored by any verification method. The bits-
tate run can be performed in parallel on eight CPUs,
shrinking the run time from 34 days to about 5 days, but
w ithout change in coverage.

To explore the coverage that can be realized with
swarm verification runs for this problem, we performed a
series of measurements similar to the ones described for
the DEOS model, using the full set of search randomiza-
tion and diversification options we have described. We
performed seven sets of one hundred swarm runs, vary-
ing the available memory size from 512 KB to 32 MB. The
swarm runs can be extended to also larger memory sizes,
but the number of reached states becomes too large to
store, sort, and count with the method we are using, so no
further datapoints were obtained. In these swarm runs,
the assertion violation is readily found. We also per-
formed eleven single bitstate runs for comparison, re-
peated tw ice, using respectively one bit per state and five
bits per state. The results of the measurements are shown
in Figure 4, and should be compared with the curves
shown for the more complete dataset for the DEOS model
from Figure 3. The measurement detail is included in
Appendix A, Table 8.

The part of the curve that we are exploring for the fleet
application is clearly in the range that we have defined to
be our primary target for large search problems. To ob-
tain the right-most datapoint on the curve shown in Fig-
ure 4 required a bitstate run that took roughly 10 hours
and 22 minutes on our 2.3 GHz machine, using a memory
arena of 512 MB. The largest swarm run we performed in
a memory arena of just 32 MB can be completed 15.3
times faster, in 41 minutes, while covering 2.6 times more
states (close to 8 billion compared to 3 bil lion).

Fig. 3 Relative coverage realized for the DEOS model by two sets of one hundred randomized swarm runs (solid lines,
top) compared with three standard bitstate hashing runs using one (dashed, bottom), two (dash-dotted, middle), and

five (dotted, top) bits set per state, in memory arenas that range from 512 KB (-w22) to 512 MB (-w32). The gray horizon-
tal line indicates the total number of reachable states (22,452,390) for this model. The top solid line includes full diversifi-
cation of swarm runs. The one slighty below it does not include the reversed scheduling and transition selection options.

See also Appendix A, Tables 6 and 7.

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 9

Seen another way, the 3 billion states that require over
10 hours to compute with a traditional sequential bitstate
run can be reached in about 16 minutes with a parallel
and randomized swarm run using 100 cores, or about 40
times faster. The parallel runs can be performed on net-
worked computers, in a cloud or grid arrangement, w ith
each individual run using the maximum amount of
memory available to maximize the coverage that could be
obtained with this technique.

4.3 Scaling Behavior
In applications of distributed algorithms we are especially
interested in studying how a particular algorithm or me-
thodology will scale with the use of increasing numbers
of processes. The ideal scaling behavior, then, would be to
achieve linear or near-linear scaling. With the swarm
technique we have described here, we would like to see
how problem coverage (measured as the fraction of the
cumulative number of all reachable states covered in a
swarm run) changes with the use of increasing numbers
of CPUs or CPU-cores. For these measurements we chose
the DEOS model. It is sufficiently large to make meaning-
ful measurements, but not so large that we can no longer
determine what the full state space size is. We measured
how coverage changes with increasing numbers of CPUs
for four different memory sizes: 1, 2, 4, and 8 Mbyte.
These sizes correspond to, respectively, 0.01%, 0.02%,
0.03%, and 0.06% of the 13 GByte of memory that would
be required to complete a traditional exhaustive search.
The results are shown in Figure 5.

The top curve, corresponding to the use of 8 MByte of

storage with runtime parameter –w26, reaches to 100%
coverage. The other three curves correspond to an in-
creasing disparity between problem size and amount of
memory used. We can expect that these curves too will
reach 100% coverage if extended towards the right, but
they require larger numbers of swarm runs to do so.

The effect of reducing the amount of memory used,
then, is two-fold:

• The runs complete faster (since each run will ex-

plore a smaller number of states). For instance, the
runs for –w25 take half as long as those for –w26,
etc.

• More runs are required to reach full coverage: the
slope of the cumulative coverage curve decreases.
A ll these runs can be performed in parallel, so all
can in principle complete in the same time it takes
to perform one single run, provided a sufficient
number of CPUs is available.

Towards the left side of the range shown in Figure 5, the
relative effect of adding additional swarm runs is quite
significant, beating linear increases. Towards the right, as
we approach full coverage, the effect of additional runs
diminishes, as can be expected.

For very large applications, which are the focus of this
paper, we are most likely to operate in a range where ex-
haustive coverage is out of reach, i.e., the bottom curve in
Figure 5, where increases in the number of swarm runs
performed is most effective.

Fig. 4 Relative coverage realized for the fleet application with one hundred randomized swarm runs (solid line, top) com-
pared with standard bitstate hashing runs using one (dotted, middle), and five (dashed, bottom) bits per state, in memory
arenas that range from 512KB (-w22) to 512MB (-w32). The total number of reachable states for this model is unknown, but
was estimated it to be >1011 reachable states. This is the problem size after the application of partial order reduction (which

can itself reduce the overall state space size by an exponential amount). See also Appendix A, Table 8.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

5 THE SWARM TOOL
Even though all search variants that we have described
here are supported as standard search options in SPIN
version 5.2 and later, it may not always be easy to re-
member the entire set, and there is some work involved
in setting up the execution of large numbers of small veri-
fication jobs for a swarm run. We have therefore devel-
oped a swarm configuration tool that can automate these
tasks. The tool has a range of predefined seach options
builtin, exploiting both randomization and diversifica-
tion, and can be updated as new search variants are iden-
tified.

The Swarm tool allows the user to take full advantage
of search randomization and diversification options when
large numbers of CPUs or CPU-cores are available to
tackle a large search problem. The user is asked to specify
just three key constraints to a verification task: the
amount of memory that is available per run, the number
of CPUs or CPU-cores that can be used, and the maxi-
mum amount of runtime that may be used to complete
the search. Using these parameters, the tool configures a
swarm run that can provide significantly greater coverage
of the given search problem within the stated constraints
when compared to single bitstate run. The tool allows the
user to define also additional parameters, such as the
state size and the average state exploration speed, but
these parameters are mostly used for fine-tuning the per-
formance of a swarm run when needed.

The tool is built as a verification script generator, and
is written in about 800 lines of C. The swarm tool gene-
rates a shell script that performs as many different types
of verification runs as possible without exceeding user-

defined constraints on time and memory use.1

Given that the time and memory constraints are tightly
connected, the tool only needs to take the minimum of
these two constraints into consideration. For a given time
limit, for instance, Swarm can derive and estimate for the
maximum amount of memory that can be used. Swarm
first calculates how many states could maximally be
searched within the time and memory constraint that is
specified. It then sets up a series of bitstate runs within
that limit, using the variations we have discussed. Swarm
further adds variations of the maximum search depth, to
increase the diversification somewhat more.

 The es-
sence of the configuration and script generation algorithm
used in the Swarm tool is shown in Figures 6 and 7.

The commands that are generated include standard,
randomized, and reverse depth-first search orders, using
varying numbers and types of hash-functions per run. In
a small amount of time, hundreds of different searches
can thus be performed, each slightly different, probing
different parts of an oversized search space.

A typical command line invocation of the Swarm tool
is as follows:

$ swarm –c4 –m1G –t1 –f model.pml

For this run we specifed the availability of 4 CPU cores,
and up to 1 GB of memory per run. The –t parameter was
used to set the time limit for all runs combined to one
hour (which is also the default). The swarm tool writes
the verification script into a file w ith the same basename
as the verification model, but replacing the extension .pml
with extension .swarm, e.g., for the example above the

1 The tool is available from: http:/ / spinroot.com/ swarm/ .

Fig. 5 Cumulative coverage for DEOS, realized by 1, 2, 4, …, 100 swarm runs, using between one (w23) and eight MByte (w26) of sto-
rage, corresponding to between 0.01% and 0.06% of the memory required for exhaustive search. The horizontal dashed line indicates
100% coverage. The bottom curve corresponds to what would be linear scaling with the number of CPUs (i.e., swarm runs).

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 11

result is written into a file named model.swarm. The veri-
fication can now be performed by simply executing the
script.
 As a simple example, a swarm run for the fleet model
can be setup for an eight-core system and a one-hour time
limit, as follows:

$ export CCOMMON=”–DVECTORSZ=1500”
$ swarm –b1440 –s35000 –c8 –t1 \

–f fleet.pml
Swarm: 96 runs, avg per cpu 3599.6 sec
Swarm: script written to fleet.swarm
$./fleet.swarm

In this example, we first used an environment variable to
define compilation directives we would like to use for all
verification jobs. The invocation of the swarm command
then defines the state-size to be 1440 bytes, and gives an
estimated processing speed (measured in earlier verifica-
tion attempts) of 35,000 states per second. In this case,
swarm generated a script w ith 96 randomized runs, w ith
an estimated completion time of 3,599 seconds – within
one hour as requested.

Executing the script finds the assertion violation we
have described for the fleet model w ithin a few seconds.
In this case this is by virtue of one of the search variations
that is a standard part of Swarm’ s mix: a reverse depth-
first search. The assertion violation, as it turns out, is
normally encountered only towards the very end of the
standard depth-first order used by SPIN, but resource
limits normally prevent us from reaching that point in the
search. The error is trivially found near the start of the
search if the depth-first search order is reversed, and as
we saw earlier the chances of finding are significantly
increased if we use randomized search orders as well.

The Swarm tool can read configuration parameters
from the command line and from environment variables,
as we have shown in the examples above, but it can also
read them from a configuration script that is stored as an
plain text file. A default configuration file can be generat-
ed by the tool itself w ith a runtime option: “ swarm –l” .
This default configuration file is shown in Appendix B.

The user can edit the configuration file to adjust the pa-
rameter settings for a specific application. The default file
defines eight different ways to compile the model check-
ing engine itself, using forward, reversed, randomized
process and transition orderings. As new search modes
are defined, they can be added to the set, and when spe-
cific variants are not desired in a particular application
they can be removed. The methodology is therefore not
restricted to leveraging diversified verification runs, as
we have discussed so far, but could also be applied more
generally.

The line in the configuration script that defines the
number of available cpus, e.g.:

cpus 4

can also specify the use of remote computers, provided
that they are setup to allow password-less ssh connec-
tions. For instance, if we want to define a run using 4
CPUs on the local machine, 8 on a remote machine called
nada, and 6 more on a remote machine called niks, for a
total of 4+8+6 = 18 CPUs, we would specify this as:

cpus 4 nada:8 niks:6

and swarm will take care of the rest.

This setup gives us a flexible and general methodology
for tackling large search problems that we expect w ill be
increasingly common.

6 RELATED WORK
Randomization is a well-known method for the partial
exploration of large search spaces. One of the first de-
scriptions of a random walk technique for protocol vali-
dation is, for instance, [W89]. This method was applied
with an extension of the Murphi model checker in [SG03]
and used in combination with a breadth-first search dis-
cipline. Stateless search methods such as random testing
and random simulation methods have an even longer
history, cf., [BM83]. Heuristic and random pruning of
statespaces in model checking tools also has a very rich
and long history, from the scatter searching method in
Trace [H85] to the random search methods used in Lurch

 for (width = fct(mem); width > 0; width--)
 { for (steps = 4; steps >= 1; steps--)
 { if (TimeUse(width, steps) < Tmax)
 { depth = (max_d - min_d)/steps;
 depth = min(1, depth);
 return width and depth # success
 } } }
 configuration fails

Fig. 6 Sample configuration for Swarm verification script gener-
ation. Tmax is the total time available on all CPUs. The configura-
tion tries to find the best values for the size of the hash-array and
the smallest incremental step for varying depth-limits. If no runs

can be scheduled, the configuration attempt fails. Each pass
through the outer-loop reduces the size of the hash-arena, creat-

ing shorter verification runs, using all available time.

 do {
 for (d = Dmax; d >= Dmin; d -= depth)
 { for (m = 0; m < modes; m++)
 { AddRuns(width, m, d);
 } }
 } while (--width > 0);

Fig. 7 Sample script generation. Each call to AddRuns adds a

run into the script to be executed by each CPU, if possible
within the time limit. For each addition, a different compila-
tion mode (m) and search depth-limit (d) is used. Random

choices are made for the type and number of hash-functions,
and the seed for the random number generator.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

[OM03]. Parallelization methods and diversification strat-
egies have also been applied in closely related fields, such
as SAT solving [HJ08], [OU09], and SMT solving [WH09].
A detailed overview of attempts to develop distributed
algorithms for solving the model checking problem di-
rectly (an approach that is orthogonal to the one de-
scribed in this paper) can be found elsewhere, e.g., in
[HB07].
 The closest method to our approach is the one that was
described in [D07], which focused on the verification of
Java code with the Java Pathfinder tool, also using paral-
lelism and randomization, but not search diversification.
 Different from this earlier work, we set a firm upper-
limit on the amount of time that can be used for a run,
and use a tool to find the best configuration of runs that
takes advantage of the available resources within given
time constraints. The swarm method uses the available
information to configure a large set of diversified and
randomized parallel runs. Swarm is defined as a relative-
ly simple front-end to SPIN that requires no changes in
SPIN itself to leverage the new capabilities. Extensions for
newly developed search algorithms, furthermore, are tri-
vial to add, requiring no change in either SWARM or SPIN.

7 CONCLUSION
It is often assumed that the best strategy for tackling large
verification problems with SPIN is to use all available
memory in a maximal bitstate search. The number of sys-
tem states reached in such a search can be significantly
larger than what is covered in a standard exhaustive veri-
fication run, which quickly exhausts memory in these
cases. Technically, one could cover still more states with
aggressive compression techniques, such as SPIN’ s buil-
tin minimized automaton verification algorithm, but the
runtime penalty for doing so can be prohibitive in the
cases of interest here.

We have noted that as memory sizes continue to grow,
at fixed processor clock-speeds, the runtime cost of a
maximal bitstate run can also become prohibitively ex-
pensive. Once the time required for performing a verifica-
tion run increases to weeks or months, the capability loses
most of its appeal, no matter how many reachable states it
can cover. The same is true for all other known approach-
es to the model checking problem.

We have described a method that allows us to perform
verifications for very large problem sizes within user-
defined time or memory bounds, while exploiting the
multi-CPU and multi-core capabilities in a more funda-
mental way. The method we have described uses paral-
lelism and search diversity to optimize verification cover-
age.

A ll search algorithms must address the problem of
finding the proverbial needle in a haystack. The odds of
finding the needle trivially depend on both the size of the
haystack and the size of the needle. Swarm verifications
use the principle that we can increase the odds of finding
the needle by using more workers, all searching the large
haystack in parallel, provided that they do not all look in
the same place. The fundamentals of the search problem

do of course remain unaltered. If the haystack is infinitely
large, the needle infinitely small, and both available time
and the number of workers is finite, basic statistics will
tell us that it would be unwise to bet that the needle will
always be found. Yet, as we have shown, we can increase
the odds of finding it by close to an order of magnitude.
Swarm verifications use the one element that has so far
been under-utilized in applications of model checking:
and that is to use large numbers of parallel workers in a
diversified search strategy.

We have measured the effectiveness of the swarm ap-
proach in different ways. We first used a simple model to
generate all 32-bit word values, and used diversified
search to match randomly placed targets in this very large
search space. In these measurements we saw the effec-
tiveness of the search increase from 4% to 100%, using a
relatively small number of different search algorithms. In
a second experiment we looked for hard-to-find assertion
violations in both medium size and very large SPIN mod-
els. For the very large problem sizes, standard bitstate
searches in the maximal amount of memory available can
still fail to locate the errors in weeks of computation. The
swarm approach succeeds even when strict time bounds
are imposed, e.g., of one hour. We compared the number
of states reached in swarm runs with comparable indi-
vidual bitstate runs and again saw improvements in cov-
erage of over an order of magnitude.

Large verification problems should be expected to be-
come increasingly common in the application of logic
model checkers to software verification. The use of diver-
sified parallel approaches becomes more attractive as the
number of processing cores and memory sizes (but not
clock-speeds) on standard desktop systems continues to
increase.

The search method we have described can be extended
in many other ways, for instance by adding context-
bounded search options as described in [MQ08], [QR05],
[HF09]. Such extensions can be made by editing a Swarm
configuration file, and require no changes in the Swarm
tool itself. We expect many other search variants to be
added in years to come to enrich the set of available
choices for search diversification.

An often underestimated aspect of new techniques is
the amount of training that w ill be required to fully leve-
rage them. This is perhaps one of the stronger points in
favor of the swarm tool. It would be hard to argue that
the use of this tool requires more training than a cursory
reading of the manual page.

ACKNOWLEDGMENT
The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract w ith the National Aeronau-
tics and Space Administration. The work was supported
in part by NASA’ s Exploration Technology Develop-
ment Program (ETDP) on Reliable Software Engineering.

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 13

REFERENCES
[1] [BM83] D.L. Bird, C.U. Munoz, Automatic generation of ran-

dom self-checking test cases, IBM Syst. J., 1983, Vol. 22, No. 3,
pp. 229-245.

[2] [BR01] T. Ball, S. K. Rajamani, Automatically validating tem-
poral safety properties of interfaces, Proc. Spin Workshop on
Model Checking Software, LNCS 2057, May 2001, pp. 103-122.

[3] [D07] M.B. Dwyer, S.G. Elbaum, et al., Parallel Randomized
State-Space Search, Proc. ICSE 2007, pp. 3-12.

[4] [M65] G.E. Moore, Cramming more components onto inte-
grated circuits, Electronics, 38, (8), April 9, 1965.

[5] [H85] G.J. Holzmann, Tracing Protocols, AT&T Technical Jour-
nal, Vol. 64, No. 10, pp. 2413-2433, Dec. 1985.

[6] [H87] G.J. Holzmann, On limits and possibilities of automated
protocol analysis. Proc. 6th Int. Conf. on Protocol Specification,
Testing, and Verification, INWG IFIP, Eds. H. Rudin and C. West,
Zurich, Switzerland, June 1987.

[7] [H00] G.J. Holzmann, Logic verification of ANSI-C Code with
Spin, Proc. 7th Spin Workshop, Stanford, CA, August 2000,
Springer Verlag, LNCS 1885, pp. 131-147.

[8] [H04] G.J. Holzmann, The Spin Model Checker: primer and refer-
ence manual, Addison-Wesley, 2004.

[9] [HS00] G.J. Holzmann and M.H. Smith, Automating software
feature verification, Bell Labs Technical Journal, Vol. 5, No. 2, pp.
72-87, April-June 2000.

[10] [HJ04] G.J. Holzmann, R. Joshi, Model-driven software verifica-
tion, Proc. 11th Spin Workshop, Barcelona, Spain, April 2004,
Springer Verlag, LNCS 2989, pp. 77-92.

[11] [HB07] G.J. Holzmann, D. Bosnacki, The design of a multi-core
extension to the Spin model checker, IEEE Trans. on Software
Eng., 33, (10), pp. 659-674, Oct. 2007.

[12] [HF09] G.J. Holzmann, M. Florian, Model checking with
bounded context switching. JPL LaRS Tech.Report, Oct. 2009.

[13] [HJ08] A.E.J. Hyvärinen, T. Junttila, and I. Niemelä. Strategies
for solving SAT in grids by randomized search. Intelligent Com-
puter Mathematics, LNCS Vol. 5144, Springer, 2008, pp. 125–140.

[14] [MQ08] M. Musuvathi, S. Qadeer, Fair stateless model check-
ing. Proc. ACM SIGPLAN Conf. on Prog. Language Design and
Impl., (PLDI) Tucson, AZ, June 7-13, 2008.

[15] [OU09] K. Ohmura, K. Ueda, C-sat: a parallel SAT solver for
clusters, Proc. 12th Int. Conf. on Theory and Applications of Satis-
fiability Testing, Swansea, UK, Springer, 2009, pp. 524-537.

[16] [OM03] D. Owen and T. Menzies, Lurch: A Lightweight A lter-
native to Model Checking. Proc. 15th Int. Conf. on Software Engi-
neering and Knowledge Engineering, SEKE 2003, July 2003.

[17] [P05] J. Penix, W. Visser. C. Pasareanu, E. Engstrom, A. Larson
and N. Weininger, Verifying Time Partitioning in the DEOS
Scheduling Kernel, Formal Methods in Systems Design Journal,
Volume 26, Issue 2, March 2005.

[18] [W89] C. West, Protocol validation in complex systems, in:
Proc. Symp. On Comm. Architecture and Protocols, Austin, Texas,
USA, 1989, pp. 303-312.

[19] [QR05] S. Qadeer and J. Rehof, Context-bounded model check-
ing. Proc. TACAS 2005, LNCS 3440, pp. 93-107.

[20] [SG03] H. Sivaraj, and G. Gopalakrishnan, Random walk based
heuristic algorithms for distributed memory model checking,
Proc. 2nd Int. Workshop on Parallel and Distributed Model Checking
(PDMC'03), Boulder, Colorado, USA, July 2003.

[21] [VH03] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda,
Model Checking Programs Int. Journal on Automated Software En-

gineering 10(2), April 2003.
[22] [WH09] C.M. Wintersteiger, Y. Hamadi, and L. de Moura, A

concurrent portfolio approach to SMT solving, Proc. Int. Conf.
on Computer Aided Verification, Grenoble, France, 2009, pp.
715-720.

Gerard J. Holzmann received a B.Sc. (1973) and M.Sc. (1976)
degree in EE, and a Ph.D. degree in Technical Sciences from Delft
University in The Netherlands in 1979.
 He joined the Computing Sciences Research Center of Bell La-
boratories in Murray Hill, NJ, USA in 1980 as a Member of Technical
Staff, was promoted to Distinguished Member of Technical Staff in
1995, and to Director of Computing Principles Research in 2001. In
2003 he joined NASA’s Jet Propulsion Laboratory in Pasadena, CA.
USA as Principal Computing Scientist, and was appointed JPL Fel-
low in 2007. He also serves as Faculty Associate in the Computing
Science Department of the California Institute of Technology in Pa-
sadena, CA, USA.
 Dr. Holzmann is a member of the Association for Computing Ma-
chinery (ACM) and a member of the US National Academy of Engi-
neering (NAE). He was the recipient of the 2001 ACM Software Sys-
tems Award, the 2002 ACM SIGSOFT Outstanding Research Award,
and a co-recipient of the 2006 ACM Paris Kanellakis Theory and
Practice Award.

Rajeev Joshi received his B.Tech degree in Computer Science from
the Indian Institute of Technology in Bombay, India, an M.Sc. degree
in 1994, and a PhD in Computer Science in October 1999, both in
Computer Science from the University of Texas at Austin. From No-
vember 1999 through August 2003 he worked at the Compaq/HP
Systems Research Center (formerly DEC-SRC). Since October 2003
he is with the Laboratory for Reliable Software (LaRS) at NASA’s Jet
Propulsion Laboratory in Pasadena, CA.

Alex Groce received a BSc degree in Computer Science from North
Carolina State University in 1999, and a PhD degree in Computer
Science from Carnegie Mellon University in Pittburgh, PA in 2005. In
April 2005, Dr. Groce joined the Laboratory for Reliable Software at
NASA’s Jet Propulsion Laboratory in Pasadena, CA. Since June
2009 he is with the Computer Science Department at Oregon State
University.

© 2010 California Institute of Technology. Government
sponsorship is acknowledged.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, #

APPENDIX A: MEASUREMENT DETAIL
The following tables detail the numbers of states reached
in each measurement reported in Figures 2, 3, and 4 and
Table 3.

Table 4 – Swarm Runs (Fig. 2 and Table 3)

100 runs dtp pftp cambridge
-w16 (8 KB) 224198 275624 233696
-w17 (16 KB) 308369 345728 320038
-w18 (32 KB) 364250 402585 413284
-w19 (64 KB) 391709 436886 495084
-w20 (128 KB) 394076 439891 529869
-w21 (256 KB) 394182 439895 532529

Table 5 – Single Bi tstate Runs (Fig. 2)

single runs dtp pftp cambridge
-w16 (8 KB) 23861 33258 37329
-w17 (16 KB) 31105 60555 74516
-w18 (32 KB) 110395 117122 134287
-w19 (64 KB) 204778 165765 229623
-w20 (128 KB) 302131 237065 343325
-w21 (256 KB) 350131 336867 428286
-w22 (512 KB) 372653 381832 478664
-w23 (1 MB) 382996 405679 505950
-w24 (2 MB) 388242 424016 518912
-w25 (4 MB) 391222 431913 522487

Table 6 – DEOS M odel , Swarm Runs (Fig. 3)

Randomization Only (l) and With Diversi f i cation (r)

100 runs randomization w.diversification
-w22 (512 KB) 7843426 9126333
-w23 (1 MB) 11009609 11773978
-w24 (2 MB) 15724931 16833483
-w25 (4 MB) 19724102 20239659
-w26 (8 MB) 22345857 22277612
-w27 (16 MB) 22486315 22654789

Table 7 – DEOS model , Single Bi tstate Runs (Fig. 3)

single runs -k1 -k2 -k5

-w22 538050 873288 912201
-w23 1017783 1683773 1743155
-w24 1807077 3183257 3412892
-w25 3261134 5817156 6478031
-w26 5630508 10028176 11827967
-w27 9118826 15907709 19127215
-w28 13296249 20001910 22139576
-w29 16869092 21721577 22437522
-w30 19318514 22262421 22451655
-w31 20802816 22407351 22452390
-w32 21608959 22442930 22452390

Table 8 – Fleet M odel (Fig. 4)

HashArray 100 runs single –k1 single –k5
-w22 (512 KB) 160092887 3398644 1779123
-w23 (1 MB) 309139672 6737602 3526140
-w24 (2 MB) 594329913 13242575 7007478
-w25 (4 MB) 1141673661 25883720 13905585
-w26 (8 MB) 2176803189 51183710 27657072
-w27 (16 MB) 4132283171 100521980 54924346
-w28 (32 MB) 7851992006 197517950 109225430
-w29 (64 MB) 393052570 216462870
-w30 (128 MB) 771986150 431536010
-w31 (256 MB) 1520757500 857823270
-w32 (512 MB) 3019252900 1706369200
-w33 (1 GB) 5953472200 3392343400

For the five applications used for the measurements in
section 4 of this paper, the model checking code was gen-
erated as follows:

$ spin –a dtp.pml
$ spin –a –o1 –o2 –o3 –o4 pftp.pml

$ spin –a cambridge.pml

$ spin –a DEOS.pml

$ spin –a fleet.pml

In each case, the model checking code generated was
compiled for the single bitstate runs with the following
command:

$ gcc –O2 –DSAFETY –DBITSTATE –o pan pan.c

As discussed in the paper, for the dtp, pftp, and cambridge
applications we further includeed the compilation direc-
tive –DNOREDUCE to increase the size of the statespace to
a more meaningful value.

For the swarm runs, we added the compilation direc-
tives –DP_RAND and –DT_RAND to enable randomization,
and we used the four possible uses/ non-uses of directives
–DREVERSE and –DT_REVERSE, as discussed in the paper,
and as also illustrated in the Swarm configuration file
shown in Appendix B.

HOLZMANN ET AL.: SWARM VERIFICATION TECHNIQUES 15

APPENDIX B: SWARM DEFAULT CONFIGURATION FILE

Swarm Version 2.2 -- 15 October 2009

Default Swarm configuration file

there are four main parts to this configuration file:

ranges, limits, compilation options, and runtime options
the default settings for each are shown below -- edit as needed

comments start with a # symbol

this version of swarm requires the use of Spin Version 5.2 or later

See the documentation for the additional use of

environment variables CCOMMON and RCOMMON
http://spinroot.com/swarm/

range

k 1 4 # optional: to restrict min and max nr of hash functions

limits
d 10000 # optional: to restrict the max search depth

cpus 2 # nr available cpus (exact)

memory 512M # max memory per run; M=megabytes, G=gigabytes

time 60m # max time for all runs; h=hours, m=min, s=sec, d=days

hash 1.5 # hash-factor (estimate)

vector 512 # nr of bytes per state (estimate)
speed 250000 # nr states explored per second (estimate)

file model.pml # file with the spin model to be verified

compilation options (each line defines one complete search mode)

-DBITSTATE –DPUTPID # standard dfs

-DBITSTATE -DPUTPID -DT_REVERSE # reversed transition ordering
-DBITSTATE -DPUTPID -DREVERSE # reversed process ordering

-DBITSTATE -DPUTPID -DREVERSE -DT_REVERSE # both

-DBITSTATE -DPUTPID -DP_RAND -DT_RAND # randomized versions of the same set

-DBITSTATE -DPUTPID -DP_RAND -DT_RAND -DT_REVERSE

-DBITSTATE -DPUTPID -DP_RAND -DT_RAND -DREVERSE

-DBITSTATE -DPUTPID -DP_RAND -DT_RAND -DREVERSE -DT_REVERSE
-DBITSTATE -DPUTPID -DBCS # bounded context switching

-DBITSTATE -DPUTPID -DBCS -DREVERSE

-DBITSTATE -DPUTPID -DBCS -DT_REVERSE

-DBITSTATE -DPUTPID -DBCS -DREVERSE -DT_REVERSE

runtime options (one line)
-c1 -x -n

	1 Introduction
	2 Spin
	2.1 Bitstate Verification
	2.2 Multi-Core Verification
	Parallelism and Search Diversity

	Search Diversification
	3.1 Adding Randomization

	4 Application
	4.1 Methodology
	4.2 Models
	4.3 Scaling Behavior

	5 The Swarm Tool
	Related Work
	7 Conclusion
	Acknowledgment
	References
	Appendix A: Measurement Detail
	Appendix B: Swarm Default Configuration File

