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ABSTRACT
This paper provides a preliminary report on a new research
project that aims to construct a code generator that uses
an automatic theorem prover to produce very high-quality
(in fact, nearly mathematically optimal) machine code for
modern architectures. The code generator is not intended
for use in an ordinary compiler, but is intended to be used
for inner loops and critical subroutines in those cases where
peak performance is required, no available compiler gener-
ates adequately efficient code, and where current engineering
practice is to use hand-coded machine language. The pa-
per describes the design of the superoptimizer, and presents
some encouraging preliminary results.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General; C.4
[Computer Systems Organization]: Performance of Sys-
tems

General Terms
Performance, Theory

Keywords
superoptimizer, optimizing compiler

1. INTRODUCTION

1.1 Goals
Automatic code generation is not a young subject, but

after all these decades it still happens in many program-
ming projects that for some portion of the program, the
code generated by the best compiler available is not ade-
quately efficient. When this happens, current engineering
practice is to find a senior engineer with intimate knowledge

∗Randall’s current affiliation is Google Inc., Mountain View,
CA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

of the relevant processor architecture and assign this un-
lucky individual the task of coding the relevant portions of
the program in machine language by hand. This generally
does produce the required efficient code, but since senior en-
gineers have many pressing demands on their time, it is an
expensive way to get the job done, and software productiv-
ity would be increased if automatic code generation could
match or beat the best code of the machine language guru.

The performance improvement to be expected by hand-
generating machine code is more a matter of folklore and rule
of thumb than of documented engineering experience. One
report in the literature (on the performance of the Firefly
RPC system) states that a factor of three is typical [19]. In
any case, the performance improvement is sufficient to cause
many implementers to use hand-generated code in parts of
their systems, and the cost of this practice only begins with
the time required to write the machine code in the first place.
The additional cost is that the process of porting the system
to a new architecture is no longer automatic. If the Denali
approach fulfills its potential, both costs will be eliminated
since the code fragments will be generated automatically.

This problem is not one of automating the invention of
algorithms or the design of loops, which even we shy away
from, but the much easier problem of automating the tedious
backtracking search to find a straight-line machine code se-
quence that computes a given vector of expressions in the
minimum number of cycles, achieving multiple issue when-
ever possible, respecting the latency constraints of memory
and the various functional units, doing an optimal job of
common subexpression elimination, and so on.

This is not a busy research area, perhaps for the following
reason: Most programmers spend most of their day execut-
ing an edit-compile-debug loop; and most automatic code
generators (even so-called “optimizers”) are designed to run
as part of a compiler that is used in this manner, and there-
fore are constrained by the requirement that they generate
hundreds, thousands, or millions of instructions per second.
Such a code generator has little hope of generating code that
will be good enough for our purpose. Consequently a great
deal is known about quickly generating indifferent code, and
very little is known about generating optimal code, which is
our goal. Indeed, the label “optimization” has been given to
a field that does not aspire to optimize but only to improve.
This misnomer presented a difficulty to Henry Massalin, who
invented the only other code generation technique we know
of that aimed at our goal [14]: the difficulty was that if Mas-
salin called his system an optimizer, people would assume
that it was only a code improver. So Massalin called his
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system a superoptimizer. In our title, we have adopted his
nomenclature.

Massalin’s approach was bold and creative, and a strik-
ing example of Ken Thompson’s principle “When in doubt,
use brute force”. His superoptimizer performed an exhaus-
tive enumeration of all possible code sequences in order of
increasing length. For each sequence, the superoptimizer ex-
ecuted the sequence against a suite of tests, and a sequence
that passed all tests was printed as a candidate.

Massalin’s original implementation was for the 68000 only,
but his method has been employed by Granlund and others
to produce superoptimizers for other machines[7].

Massalin’s work was path-breaking, but the problem is
important enough that we decided to explore an alternative
search strategy that we hope will scale better than exhaus-
tive enumeration. As yet, we have only preliminary results
for our system, but they are consistent with our expecta-
tion that Denali will improve on Massalin’s superoptimizer
in several ways:

• Massalin’s approach finds the shortest program. On
Massalin’s 68000, the shortest would also be the fastest,
but on multiple-issue architectures this need not be so.

• To require the user to prepare a bank of tests for each
fragment of code to be generated is painfully onerous.
By contrast, the input to Denali is similar to the input
to a conventional code generator.

• Passing tests is not the same as being correct, so the
output of Massalin’s superoptimizer must be studied
carefully to check that it is correct. By contrast, the
output of Denali is correct by design.

• Since executing random code could have undesirable
effects, the enumeration of candidate sequences must
be limited to some repertoire of sufficiently safe in-
structions, so that executing the candidates doesn’t
crash the program or interfere with the code generator
itself. It would appear from his paper that Massalin
generated only register-to-register computations that
performed no accesses to memory. Denali has no such
limitation.

• Brute-force enumeration of all code sequences is gla-
cially slow. Massalin succeeded in finding impressive
short code sequences, but his method seems to be lim-
ited to sequences of around half-a-dozen instructions.
Denali substitutes goal-directed search for brute-force
enumeration, for an enormous gain in efficiency. Our
prototype is able to generate a near-optimal sequence
of thirty-one instructions in around four hours.

We have been experimenting with the idea behind Denali
for a little over a year. Our current prototype generates
code for the Alpha EV6, the latest publicly available imple-
mentation of the Compaq Alpha processor. The prototype
consists of some 15,000 lines of C and Java and some 700
lines of axioms. We are currently making the changes nec-
essary to target the Intel Itanium architecture. It appears
that this shift will not require any radical changes (and the
changes will mostly be to the axioms), but this preliminary
note will describe the Alpha version of Denali only.

1.2 The search principle
It may seem to some readers that an automatic theorem

prover is an unlikely engine to use as a code generator. In
an effort to correct this misperception, we would like to em-
phasize an important principle.

The search principle: A refutation-based automatic theo-
rem prover is in fact a general-purpose goal-directed search
engine, which can perform a goal-directed search for any-
thing that can be specified in its declarative input language.
Successful proofs correspond to unsuccessful searches, and
vice-versa.

A refutation-based prover is a prover that attempts to
prove a conjecture C by establishing the unsatisfiability of
its negation ¬C. The search principle is not true of all
refutation-based provers, but it is true of an important kind
of prover with which our research laboratory has much ex-
perience [15, 2].

As an example of the search principle, to search for er-
rors in a computer program, we express in formal logic the
conjecture that there are no errors, and give this conjec-
ture to a refutation-based automatic theorem prover. If the
proof succeeds, the search for errors has failed. If the proof
fails, embedded within the failed proof is the error (or er-
rors) that caused the proof to fail, which can be extracted
and presented to the user of the program checker. This
approach has been used by the Extended Static Checking
research project [3, 13, 6].

A second example of the principle is Tracy Larrabee’s
hardware test vector generator, which finds a test vector for
a given fault by refuting the conjecture that no test vector
for the fault exists, using a satisfiability solver [11].

1.3 The obvious approach
The search principle suggests an obvious way to build the

code generator we desire. To generate optimal code for a
program fragment P , we express in formal logic a conjecture
of the following form:

conjecture No program of the target architecture com-
putes P in at most 8 cycles.

We then submit the conjecture to an appropriate automatic
theorem prover. If the proof succeeds, then 8 cycles are not
enough, and we try again, with, say, 16 cycles. On the other
hand, if the proof of the conjecture fails, then embedded in
the failed proof is an (at most) 8-cycle program that com-
putes P . We extract that program, and try again with 4
cycles. Continuing with binary search, we eventually find,
for some K, a K-cycle program that computes P , together
with a proof that K − 1 cycles are insufficient: that is, an
optimal program to compute P on the given architecture.
(Since the costs of the probes are far from constant, binary
search might not be the best strategy, but we have not ex-
plored alternatives.)

It is easier to describe the obvious approach than to make
it work. If carried out naively, the conjectures submitted to
the prover become unwieldy. Suppose, for example, that we
proceeded by defining in formal logic the two functions

exec(M, i) The machine state produced by executing the
machine code sequence M on the input state i.

meaning(P ) The meaning of a program (or program frag-
ment) P as a function from input states to output
states.
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Then the conjecture that no machine code sequence M com-
putes a given program fragment P in K cycles becomes:

¬(∃M : M is a K-cycle program :
(∀ i : i is an input state :

exec(M, i) = meaning(P )(i)))

Conjectures of this form are daunting for two reasons: First,
the universal quantifier nested within the existential quanti-
fier is difficult for automatic theorem provers to handle. Sec-
ond, the many cases in the definitions of exec and meaning

tend to lead automatic theorem provers into a morass of case
analyses.

1.4 The Denali Approach
Luckily, the alternating quantifiers and the full defini-

tions of exec and meaning are unnecessary. For a suf-
ficiently simple program fragment P , the equivalence of M

and P for all inputs is essentially the universal validity of an
equality between two vectors of terms, the vector of terms
that M computes and the vector of terms that P specifies
must be computed. Such equivalences can be proved us-
ing matching, a well-understood automatic theorem-proving
technique. For example, suppose that we want to prove that
the program fragment reg6 := 2*reg7 is equivalent, for all
inputs, to the one-instruction machine program

leftshift reg7,1,reg6

(We use a three-operand assembly language with the desti-
nation given in the third argument.) Denali’s matcher will
prove this equivalence by instantiating the algebraic identity

(∀x : 2 ∗ x = x << 1)

with the instantiation x := reg7. The algebraic identity
shown above is an example of a collection of identities used
by Denali and expressed in declarative symbolic form (as a
Denali axiom). We will describe axioms in more detail in
section 4.

So, instead of introducing an explicit quantifier over all in-
puts, we accept the limitation that the only proofs of equiv-
alence for all inputs that we will consider between a program
fragment and a machine code sequence are proofs by match-
ing. If this limitation caused a valid proof of equivalence to
be missed, then Denali might miss the most efficient way
of computing some term, and its output might fail to be
optimal, but its output would still be correct.

For the kinds of conjectures that we encounter in code
generation, it turns out, perhaps surprisingly, that, once the
proof of equivalence for all inputs is handled by matching, all
that remains of the proof can be handled by purely proposi-
tional reasoning, which boils down to boolean satisfiability
solving (SAT solving). The matcher finds all possible ways
of computing the result, and the SAT solver selects from
these the fastest, considering common subexpressions, delay
constraints of the architecture, multiple issue constraints,
and so forth. Roughly speaking, the matcher solves the un-
decidable part of the optimal code generation problem, and
the satisfiability solver solves the NP-complete part. It is an
effective division of labor. Our current (very limited) experi-
ence suggests that in practice, the most expensive step is the
satisfiability solver. But the architecture of Denali separates
this solver so effectively from the rest of the code generator
that we can easily substitute the current champion satisfi-
ability solver and use it instead of its predecessor. Indeed,

as short as the project’s history is, we have already made
several substitutions of this sort. The solver used by default
by our current prototype is the CHAFF SAT solver [1].

The essential novelty of Denali is the combination of the
two phases and their application to the superoptimization
problem. We do not claim novelty of either phase by itself:
the E-graph matching phase applies techniques that have
been used in automatic theorem-proving for ten or fifteen
years [2] (although the earliest accounts of the technique
failed to publish the matching algorithms [4, 15, 17]), and
the satisfiability search phase can be viewed as an applica-
tion to code generation of the recent ideas of Henry Kautz
and Bart Selman about the AI planning problem [9, 8, 10].

The remaining sections of this paper describe in order

• the input to Denali,

• the translation strategy,

• the axioms used by Denali,

• how Denali’s matcher works,

• how the propositional constraints are generated,

• some additional issues whose solutions are beyond the
scope of this short paper, and finally

• some preliminary results.

2. THE INPUT TO DENALI
The input to Denali is a program in a language with a

low-level machine model, similar to C or assembly language.
The language includes higher-level control constructs, such
as conditionals and loops. In addition, the language includes
features by which the programmer can indicate that certain
loops are to be unrolled or that certain memory references
are likely to miss in the cache, or that the code generator
should trust the programmer that certain conditions hold
at certain control points in the program. The language is
not intended for writing programs of any size directly; it is
intended to be used for writing the body of an inner loop,
for example, or for writing short subroutines. Figures 3 and
5 contain examples.

3. THE TRANSLATION STRATEGY
The Denali prototype translates its input into an equiva-

lent assembly language source file. The translation strategy
is as follows: Each procedure in the input is converted into
a set of guarded multi-assignments, which are the inputs to
the crucial inner subroutine of the code generator.

A guarded multi-assignment (or GMA) is determined by
a sequence targets of designators (also called L-values), an
equally long sequence newvals of expressions (also called R-
values), a boolean expression G called the guard, and an exit
label L. The meaning of such a GMA is:

if G then

(targets) := (newvals)
else

goto L

end

We generally write G → (targets) := (newvals) to denote
this GMA, leaving the exit label to be determined by the
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Figure 1: Generating code for a GMA consists of

matching followed by satisfiability solving.

context. For example, before unrolling, the GMA for the
inner loop of a copy routine might be:

p < r → (*p, p, q) := (*q, p + 8, q + 8)

with an exit label appropriate for an exit from the copy
loop. Denali translates the pointer references in this GMA

into accesses to the memory M:

p < r → (M[p], p, q) := (M[q], p + 8, q + 8)

Next, because our automatic theorem prover treats entire
arrays as values, the update to M[p] is transformed by Denali
into an update to M:

p < r → (M, p, q) := (store(M, p, M[q]), p + 8, q + 8)

The Denali prototype converts each procedure in its input
into a set of GMAs, and then uses the crucial inner subrou-
tine to convert each GMA into near-optimal machine code,
using the search principle as modified to rely on matching
and satisfiability search. Our efforts have been concentrated
on improving this inner subroutine rather than on improv-
ing the factorization of a procedure body into a collection of
GMAs, where many conventional techniques could usefully
be applied (including register allocation, which the current
prototype ignores). Figure 1 illustrates the crucial inner
subroutine that translates a single GMA into optimal code
in two phases: matching and satisfiability search.

The guarded multi-assignment is a special case of the Reg-
ister Transfer List (RTL) [18]. The extra generality of the
RTL is the possibility of different guards for the different up-
dates of the multi-assignment. This extra generality seems
to be useful when RTLs are used in machine descriptions,
but for our purpose of describing the input to the code gen-
erator, we have not encountered any examples where the
extra generality of the RTL was wanted.

In the overall flow of figure 1, the matcher converts the
GMA into an E-graph, which is a data structure that com-
pactly represents all possible ways of computing the goal
terms. In addition to the GMA itself, the matcher takes
as input a set of axioms about the operators that are com-
putable by the target architecture. It remains to be deter-
mined whether any of the ways of computing the goal terms
can be computed by the target architecture within the cycle
budget K. The constraint generator formulates this remain-
ing question as a boolean satisfiability problem. In addition
to the E-graph, an important input to the constraint gen-
erator is an architectural description, which includes tables
specifying which functional units can execute which instruc-
tions, and a table of latencies of the various ALU operations,
and, in the case of multiple register banks, of the latencies
of the data paths connecting different banks. Finally, a con-
ventional boolean satisfiability solver is used to find a so-
lution or determine that no solution exists. The matching
step is performed only once per GMA; the constraint genera-
tion and satisfiability solution steps are repeated for various
cycle budgets until an optimal machine program is found.

The matcher and the constraint generator are the subjects
of sections 5 and 6 of this report.

4. AXIOMS
As mentioned above, axiom files record in declarative form

facts about the operations relevant to efficient code gener-
ation. We find that we use two kinds of built-in axioms:
mathematical axioms, which provide facts about functions
and relations that would be useful in describing many dif-
ferent target architectures, and architectural axioms, which
define or describe operations relevant to a particular target
architecture. In addition to built-in axioms, Denali allows
program-specific axioms.

We next give some examples of mathematical axioms, fol-
lowed by examples of architectural axioms for the Alpha
instruction set architecture. We have taken these exam-
ples from Denali’s standard axiom files. For expository pur-
poses, we have made two changes: converting from LISP-
like parenthesized expressions into traditional mathemati-
cal notation, and suppressing patterns, which determine the
instances of universally quantified axioms that will be intro-
duced by the matcher. Readers who are interested in the
details will find examples of axioms expressed in Denali’s
LISP-like input syntax in section 8.

The mathematical function add64 denotes integer addi-
tion modulo 264. Three representative mathematical axioms
postulate that add64 is commutative, associative, and has
identity 0:

(∀ x, y :: add64(x, y) = add64(y, x))

(∀ x, y, z :: add64(x, add64(y, z)) = add64(add64(x, y), z))

(∀ x :: add64(x, 0) = x)

Denali’s mathematical axioms include fundamental proper-
ties of the functions select and store that represent reads
and writes of arrays. One of these is the select-store ax-
iom, which says that writing element i of an array a doesn’t
change any element with an index j different from i:

(∀a, i, j, x :: i = j

∨ select(store(a, i, x), j) = select(a, j))
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Denali’s mathematical axioms also define the functions
selectb and storeb, which are like select and store, ex-
cept that they treat integers as arrays of bytes: selectb(w, i)
denotes byte i of word w.

A typical architectural axiom is simply an equality that
defines some operation of the target architecture in terms
of mathematical functions. For example, the Alpha has the
assembly instructions extbl, insbl and mskbl (extbl(w, i)
“extracts” byte i of longword w; insbl(w, i) creates a long-
word with byte i equal to the least significant byte of w and
other bytes zero; mskbl(w, i) creates a copy of longword w

with byte i set to zero). These are defined to Denali by:

(∀ w, i :: extbl(w, i) = selectb(w, i))

(∀ w, i :: insbl(w, i) = selectb(w, 0) << 8 ∗ i)

(∀ w, i :: mskbl(w, i) = storeb(w, i, 0))

As these examples illustrate, we usually use the same name
for an instruction and for the function that it computes.

The Denali prototype automatically loads a file of math-
ematical axioms and a file of architectural axioms for the
Alpha EV6. These files have grown over the course of our
project, and will need to grow further before they are satis-
factory. Currently, there are 44 mathematical axioms, com-
prising 127 source lines, and 275 Alpha axioms, comprising
637 lines. Together, these are the built-in axioms of our
prototype.

In addition, a Denali source program may include axioms
that are not important enough to include in the built-in ax-
iom files, but are useful to the compilation of that particular
program. Such axioms can be used as a powerful substitute
for conventional macros. For example, one of our tests re-
quires computing the ones complement checksum of an array
of 16-bit integers (see section 8). For convenience, this pro-
gram defines its own addition operator add by means of the
following axiom:

(∀ x, y :: add(x, y) = add64(add64(x, y), carry(x, y)))

The carry operation used in the definition of add is also
defined locally in the program by the following two axioms:

(∀ x, y :: carry(x, y) = cmpult(add64(x, y), x))

(∀ x, y :: carry(x, y) = cmpult(add64(x, y), y))

The definition by two axioms instead of one gives the code
generator the freedom to compute carry(a, b) by comparing
add64(a, b) with either a or b.

5. MATCHING
The purpose of the matching phase of Denali is to use the

axioms to identify all of the possible ways in which the ex-
pressions in the GMA can be computed. Since the number
of ways may be enormous (exponentially larger than the size
of the expressions) it is important to choose a data structure
carefully. The matching phase of Denali uses a data struc-
ture called the E-graph. Early descriptions of the E-graph
include the PhD thesis of one of the authors (Nelson)[15],
a journal paper by Nelson and Oppen [17], and the cru-
cial Downey-Sethi-Tarjan congruence closure algorithm [4].
None of these papers say much about the matching algo-
rithm. Denali uses the same matching algorithm as the au-
tomatic theorem prover Simplify. This matching algorithm
is described in an upcoming research report [2].
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Figure 2: Solid arrows represent term DAG edges

and dashed arcs represent equivalences in this illus-

tration of matching in the E-graph

An E-graph is a conventional term DAG augmented with
an equivalence relation on the nodes of the DAG; two nodes
are equivalent if the terms they represent are identical in
value. Hence the value of an equivalence class can be com-
puted by computing any term in the class; having selected
a term in the class, the values of each argument of the term
likewise can be computed by selecting any term equivalent
to the argument term, and so forth. Thus an E-graph of
size O(n) can represent Θ(2n) distinct ways of computing a
term of size n.

The machine code for a GMA must evaluate the boolean
expression that is the guard of the GMA, and must also
evaluate the expressions on the right side of the assign-
ment statement, as well as the addresses of any targets that
are not registers (that is, address arguments to select and
store). Let us call all these expressions the goal expressions,
since the essential goal of the required machine code is to
evaluate them.

Typical GMAs have several goal terms, but Figure 2 illus-
trates Denali’s matcher for the artificially simplified situa-
tion of a single goal term, namely the term reg6*4+1, which
we have chosen to illustrate several points about matching.
The first step in the matching phase is to construct an E-
graph that represents all the goal terms. Figure 2(a) shows
the initial E-graph of our simple example. It is a conven-
tional term DAG: that is, a term of the form f(t1, t2, . . . , tn)
is represented by a node labelled f with an outgoing se-
quence of edges pointing to the nodes that represent the t’s.
If no matching were performed at all, so that Figure 2(a)
were the final E-graph, then the only way to compute the
goal term would be by a multiply followed by an add.

The matcher repeatedly transforms the E-graph by in-
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stantiating a relevant axiom and asserting the instance in the
E-graph. This is repeated until a quiescent state is reached
in which the E-graph records all relevant instances of ax-
ioms. In the case of our example, the first relevant fact that
we will add to the graph is the fact 4 = 22. When this
fact is added, the E-graph is changed by adding a new node
to represent the term 22 (or 2 ** 2) and adding this new
node to the equivalence class of the existing node for “4”.
Figure 2(b) shows the result of this transformation. (We
use dashed edges to connect nodes that are equivalent.) Of
course, the Alpha does not have an instruction for comput-
ing **, so this match has not directly introduced any new
ways of computing the goal term: if matching terminated
with the E-graph of Figure 2(b), the only way to compute
the goal term would be by the same multiply and add se-
quence available already in the initial graph. But this does
not mean the change to the E-graph was useless, because it
enables new matches. Specifically, matching now continues
by finding a relevant instance of the fact

( ∀ k, n :: k ∗ 2n = k <<n )

namely the instance with (k, n) := (reg6, 2). (An ordinary
matcher would fail to match the pattern k ∗ 2 **n against
the term-DAG node reg6∗4 because the node labelled “4” is
not of the form 2n, but an E-graph matcher will search the
equivalence class and find the node 2 ** 2 and the match will
succeed.) The resulting E-graph is shown in Figure 2(c). If
matching were terminated at this point, then in addition to
the multiply-add sequence there would be a shift-and-add
sequence (which is faster and therefore would probably be
selected). Finally, the Alpha contains an instruction called
s4addl which scales by four and adds. The background facts
for Denali therefore include the architectural axiom

( ∀ k, n :: k ∗ 4 + n = s4addl(k, n) ) .

When the matcher instantiates this with (k, n) := (reg6, 1)
and updates the E-graph, the result is the graph shown in
Figure 2d. This adds a new possibility for computing the
goal term (superior to both of the other possibilities) using
a single s4addl instruction.

Here are three comments about this example.
First, the order in which the matches would occur in prac-

tice might very well be different than the order described:
s4addl could have been introduced immediately. However,
the << node could not be introduced until the equality of 4
with 2 ** 2 was introduced.

Second, we contrast E-graph matching with conventional
matching. Many conventional matchers are rewriting en-
gines, in the sense that they directly rewrite a term into a
new form, recursively rewriting subexpressions before rewrit-
ing a root expression. For example, they might rewrite n∗2
into n<<1. Such a rewriting engine would be unlikely to
rewrite 4 as 2**2, since the latter term is not an efficient
way to compute the former. Similarly, a rewriting engine
that produced the fairly efficient reg6<<2 might miss the
most efficient version with s4addl, since the pattern for the
fact involving s4addl most naturally involves multiplication
by four, not left-shifting by two. In general, to reach the
optimal version by a sequence of elementary rewrites may
require rewriting some subterms in ways that reduce effi-
ciency rather than improve it, and, in general, a transforma-
tion that improves efficiency may cause the failure of subse-
quent matches that would have produced even greater gains.

These are well-known and thorny problems for rewriting
engines. The E-graph doesn’t suffer from these problems,
since, instead of rewriting A as B, it records A = B in its
data structure, leaving both A and B around, where they
can be used both for future matching and as candidates for
the final selection of instructions.

A third comment is that the attractive features of the E-
graph approach mentioned in the second comment are not
without their price. Matching in an E-graph is more expen-
sive than matching a pattern against a simple term DAG.
Also, many matches are required to reach quiescence, and
the quiescent state may be quite a large E-graph. For ex-
ample, Denali’s matcher uses the commutativity and asso-
ciativity of addition to find more than a hundred different
ways of computing a + b + c + d + e. Nevertheless, Denali
seems to be efficient enough to be useful.

In our description of Denali’s matcher, we have so far
considered only facts that are (quantified or unquantified)
equalities between terms (that is, facts of the form T =
U). Two other kinds of facts that the matcher uses are
(quantified or unquantified) distinctions and clauses. As
with equalities, quantified distinctions and clauses are trans-
formed into the corresponding unquantified kind of fact by
finding heuristically relevant instances, so it suffices to ex-
plain how Denali uses unquantified distinctions and clauses.

A (binary) distinction is a fact of the form T 6= U for two
terms T and U . Binary distinctions are the only kind of
distinction that we will consider in this preliminary report.
A distinction T 6= U is asserted in the E-graph by recording
the constraint that the equivalence classes of T and of U are
uncombinable.

Equalities and Distinctions are collectively called literals.
The third kind of fact that Denali uses is a clause, which is
a disjunction (“or”) of literals, that is, a fact of the form

L1 ∨ L2 ∨ . . . ∨ Ln

where the L’s are literals. An unquantified clause is used
by recording it in a data structure and then continuing as
follows. Whenever any of its literals becomes untenable,
the untenable literal is deleted from the recorded clause.
Furthermore, if the deletion of the untenable literal from a
recorded clause leaves the clause with a single literal, then
that lone literal is asserted. An equality T = U is unten-
able if the equivalence classes of T and of U have been con-
strained to be uncombinable. A distinction T 6= U is unten-
able if T and U are in the same equivalence class.

We conclude this section with an example that illustrates
how the matcher uses clauses and distinctions. If a GMA

involved storing some value (say x) to address p and then
loading from address p + 8, then the E-graph would include
the term

select(store(M, p, x), p + 8)

The presence of this term would cause the body of the select-
store axiom (see section 4) to be instantiated by (a, i, j) :=
(M, p, p + 8), causing the matcher to make a record of the
unquantified clause

p = p + 8

∨ select(store(M, p, x), p + 8) = select(M, p + 8)

By mechanisms that we will not describe in this preliminary
report, the literal p = p+8 will be discovered to be untenable
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and deleted, leading to the assertion of the equality

select(store(M, p, x), p + 8) = select(M, p + 8)

The presence of this equality in the E-graph gives the code
generator the option of doing the load and store in either
order.

The matching phase uses identities and reasons about
equalities, distinctions, and clauses. When the matching
phase is complete, the final equivalence relation of the E-
graph is all that matters: the distinctions and clauses used
on the way are not used in any way by the satisfiability
search phase that follows.

6. SATISFIABILITY SOLVING
After the matcher has reached a quiescent state, the E-

graph represents all possible ways of computing the terms
that it represents. (More precisely, this is true if the axioms
include a complete axiomatization of the first order theory of
the relevant operations and if the matching phase is allowed
to run long enough, and if the heuristics that are designed
to keep the matcher from running forever don’t mistakenly
stop it from running long enough. These caveats about the
matcher are the first reason that we call Denali’s output
“near-optimal” instead of “optimal”.) In order to obtain
optimal code, it remains to formulate a conjecture of the
form

No program of the target architecture computes the values
of the goal terms within K cycles

where K is a specified literal integer constant. Happily, this
can be formulated in propositional calculus, so that it can
be tested with a satisfiability solver. The exact details are
somewhat architecture-dependent, but the basic idea is sim-
ple. To illustrate the basic idea we assume a machine with-
out multiple issue, so that at most one instruction is issued
per cycle. We define a function to be a machine operation
if some instruction of the target architecture is capable of
computing the function. In addition to machine operations,
the E-graph also includes non-machine operations that are
allowed in the input (and in the axioms) but that cannot be
computed by the machine directly. (The matching example
in the previous section used the non-machine operation **,
so that universal facts could be expressed conveniently.)

We define a term (that is, a node of the E-graph) to be a
machine term if it is an application of a machine operation,
and a non-machine term otherwise. The arguments to a
machine term need not themselves be machine terms. (We
are not interested yet in whether the term is computable
from the inputs, only whether it could be computed if its
arguments were available in registers.)

We introduce a number of boolean unknowns. Specifically,
for each cycle i of the K cycles available, for each machine
term T , and for each equivalence class Q, we introduce the
following boolean unknowns:

L(i, T ): denotes that in the desired machine program, a
computation of term T is Launched at the beginning
of cycle i

A(i, T ): denotes that in the desired machine program, a
computation of T is completed At the end of cycle i

B(i, Q): denotes that the desired machine program has
computed the value of equivalence class Q By the end
of cycle i

Thus we have (2m + Q)K boolean unknowns, where m is
the number of machine terms and Q is the number of equiva-
lence classes in the E-graph. In terms of these unknowns we
can formulate the conditions under which a K-cycle machine
program exists that computes all the goal terms.

There are five basic conditions. In writing these condi-
tions, we use the dummy i to range over all cycle indices, T

and U to range over machine terms in the E-graph, and Q

to range over equivalence classes in the E-graph.
First, writing λ(T ) for the latency of the machine term

T , that is, the number of cycles required to apply the root
operator of T to its arguments, we observe that the interval
of time occupied by the computation of T consists of λ(T )
consecutive cycles, leading to the following obvious relation
between the cycle in which T ’s computation is launched and
the cycle in which it is completed:

î,T

(L(i, T ) ≡ A(i + λ(T ) − 1, T ))

Second, writing args(T ) for the set of equivalence classes
of the top level arguments of a term T , we observe that
an operation cannot be launched until its arguments are
available, and therefore:

î,T

^
Q∈args(T )

(L(i, T ) ⇒ B(i − 1, Q))

Third, the only way to compute the value of an equiva-
lence class Q by the end of cycle i is by computing the value
of one of its machine terms T at the end of some cycle j ≤ i

and therefore:

î,Q

0BB�B(i, Q) ≡
_
j≤i

T∈Q

A(j, T )

1CCA
Fourth, since we are assuming for simplicity a single-issue

architecture, only one operation can be launched per cycle,
so no two distinct machine terms T and U can be launched
in any cycle i: ^

i,T,U

T 6=U

(¬L(i, T ) ∨ ¬L(i, U))

Fifth, letting G denote the set of equivalence classes of goal
terms, each of these equivalence classes must be computed
within K cycles. Numbering cycles from zero, that would
be by the end of cycle K − 1:

Q̂∈G

B(K − 1, Q)

We need to continue adding constraints until the boolean
unknowns are so constrained that any solution to them cor-
responds to a K-cycle machine program that computes the
goal terms. More constraints are needed than we have shown
so far, but we have shown enough to convey the essence of
the approach.

For a fixed E-graph and a fixed cycle budget, the con-
straints are explicit propositional constraints on a finite set
of boolean unknowns. The assertion that no K-cycle ma-
chine program exists is equivalent to the assertion that their
conjunction is unsatisfiable, a conjecture that can be tested
with a SAT solver, which is of all automatic theorem provers
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the one that most clearly satisfies the search principle, since
it refutes the conjecture by finding explicit values for the
L’s, A’s and B’s that satisfy the constraints. The L’s that
are assigned true by the solver determine which machine op-
erations are launched at each cycle, from which the required
machine program can be read off.

We conclude this section with a few remarks about la-
tencies. The Denali method requires that the latency λ(T )
of each term T be known to the code generator. For ALU
operations, this requirement is not problematical, but for
memory accesses it may at first seem to be a show-stopper.
Certainly an ordinary code generator cannot statically pre-
dict the latencies of memory accesses. But the scenario in
which Denali is designed to be used is not the scenario in
which an ordinary compiler is used. The scenario is an inner
loop or crucial subroutine whose performance is important
enough to warrant hand-coding in machine language. In
this scenario, the first step is to use profiling tools to de-
termine which memory accesses miss in the cache. Having
found this information, the programmer can communicate
it to Denali using annotations in the Denali source program.
Our engineering goal is to do at least as well as the machine
language guru, who also designs her code on the basis of
profile-generated assumptions about memory latencies.

Since the information gleaned from profiling is statistical,
not absolute, we would still be in trouble if the correctness of
the generated code depended on the accuracy of the memory
latency annotations, but (precisely because caching makes
memory latencies unpredictable statically) any reasonable
modern processor (including both the Alpha and the Ita-
nium) includes hardware to stall or replay when necessary,
so that latency annotations are important for performance
but not for correctness: the code generated will be correct
even if the annotations are inaccurate. Thus we can expect
some stalls or replay traps on the first few iterations of a
Denali-optimized inner loop, but to the extent that statis-
tical information about inner loops is reliable, the loop will
soon settle into the optimal computation that was modelled
by the boolean constraints. The statistical nature of profil-
ing information is the second reason that we call Denali’s
output “near-optimal” instead of “optimal”.

7. ADDITIONAL CONSTRAINTS
The satisfiability constraints in the previous section were

simplified by the assumption of a single-issue machine, since
the cycle index i could also be thought of as an index in the
instruction stream. But the same approach easily accommo-
dates a multiple instruction architecture where cycle indices
and instruction indices both appear and must be carefully
distinguished.

Some expressions (in particular, memory accesses) on the
right side of a guarded multi-assignment may be unsafe to
compute if the guard expression is false. Therefore Denali
generates satisfiability constraints that force the guard to
be tested before any such expressions are evaluated. It is
straightforward to add additional propositional constraints
on the boolean unknowns to enforce this order.

The expressions on the right side of a guarded multiassign-
ment may use the same targets that it updates; for example,

(reg6, reg7) := (reg6 + reg7, reg6) .

In this case, the final instruction that computes the reg6 +
reg7 may not be able to place the computed value in its final

\proc byteswap4 : [ a : int ] -> int =

\var r : int \in

r := 0 ;

r<0> := a<3> ;

r<1> := a<2> ;

r<2> := a<1> ;

r<3> := a<0> ;

\res := r ;

\end

Figure 3: Envisioned program for 4-byte swap. w<i>

denotes byte i of word w, that is, selectb(w, i). Our

current prototype requires a parenthesized input

syntax in the style of figure 6.

destination. In the worst case, we may be forced to choose
between adding an early move to save an input that will be
overwritten by the rest of the code sequence or computing
a value into a temporary register and adding a late move
to put it finally into the correct location. On multiple-issue
architectures the choice between these two alternatives may
make a difference to performance. Denali encodes the choice
into the boolean constraints where it becomes just one more
bit for the solver to determine.

The ordering of procedure calls is more constrained than
the ordering of other operations, because in general, a proce-
dure call is assumed to both modify and read the memory.
This circumstance leads to additional constraints that we
also encode in the propositional constraints, but we must
leave the details for future papers.

Some instructions of some architectures compute multi-
ple results into multiple registers. In this situation we model
the instruction’s operation as a machine operation that com-
putes a tuple of the various results. We also introduce into
the axiom files non-machine projection operations that ex-
tract the individual components of the tuple. The final E-
graph will contain expressions that apply the composition
of the machine operation followed by the projection func-
tion. Such a composition represents a way of computing the
value by applying the instruction and using the result that
corresponds to the projection function.

8. PRELIMINARY RESULTS
We have implemented a prototype of Denali in Java and

C for the Alpha EV6, a quad-issue processor with multiple
register banks and extra delays for moving values between
banks, almost all of whose complexity is modeled by our
code generator. All the experiments described in this section
were carried out on a 667Mhz Alpha machine with 500MB
of main memory.

We created many tests for our prototype; we also invited
our colleagues to supply us with challenge problems.

One source of test problems are byte swap problems: the
problem of reversing the order of the n lower bytes of a reg-
ister. For n = 4, this was was a challenge problem given
long ago by a product engineering group who supported a
SPARC emulator running on the Alpha. Figure 3 shows
a representation of the input program for the 4 byte swap
given to Denali. Our prototype takes just over a minute
to generate code for this problem. Less than 0.3 seconds is
spent in the SAT solver. The sizes of the four SAT prob-
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// Register Map: {a=$16, r=$1, \res=$0, 0=$31}

byteswap4: # assume a = wxyz

extbl $16, 1, $2 # 0, U1 ; $2 = 000y

insbl $16, 3, $3 # 0, U0 ; $3 = z000

nop # 0

nop # 0

insbl $2, 2, $2 # 1, U1 ; $2 = 0y00

extbl $16, 3, $4 # 1, U0 ; $4 = 000w

nop # 1

nop # 1

or $4, $3, $3 # 2, L0 ; $3 = z00w

extbl $16, 1, $4 # 2, U1 (unused)

extbl $16, 2, $4 # 2, U0 ; $4 = 000x

nop # 2

insbl $4, 1, $4 # 3, U0 ; $4 = 00x0

or $2, $3, $2 # 3, L0 ; $2 = zy0w

nop # 3

nop # 3

or $4, $2, $0 # 4, U0 ; $0 = zyxw

ret ($26) # 4, L0

nop # 4

nop # 4

.end byteswap4

Figure 4: Generated EV6 assembly program for four

byte swap. The unused instruction is necessary: if

it were a nop, the following extbl instruction would

be scheduled on the wrong cluster.

lems solved for this example range from 1639 variables and
4613 clauses for the 4-cycle refutation to 9203 variables and
26415 clauses for the 8-cycle solution. The 5-cycle EV6 code
generated is shown in Figure 4. Each instruction in this
program is annotated with the cycle number and functional
unit (one of L0, L1, U0, U1) at which it is issued. To the best
of our knowledge, this five cycle program is optimal. With
some effort, we were able to coax the production C compiler
to tie this result, giving it aggressive switches (-fast -arch

ev6), and helpful input:

long r = ((a & 0xff) << 24)

| ((a >> 8) & 0xff) << 16)

| ((a >> 16) & 0xff) << 8)

| ((a >> 24) & 0xff) ;

For the 5-byte swap problem, Denali does one cycle better
than the C compiler. (In these experiments, the running
time of the code produced by the C compiler was computed
by hand.)

We attempted to compare Denali with the Alpha version
of the GNU superoptimizer which is available on the web [5].
But our attempts were not very successful. Version 2.5 of
the GNU superoptimizer seems to model the Alpha incom-
pletely: It models the Alpha instruction set architecture,
not the EV6. It is missing several opcodes. Finally, while
we were able to generate five-instruction sequences, we were
unable to generate longer sequences in an amount of time
that we were willing to wait (several days).

The largest challenge program we have tackled so far with

\op add : [ long, long ] -> long ;

\op carry : [ long, long ] -> long ;

\axiom (\forall [a b] add(a,b) = add(b,a)) ;

\axiom (\forall [a b c]

add(a,add(b,c)) = add(add(a,b),c)) ;

\axiom (\forall [ a b]

add(a,b) = \add64(\add64(a,b), carry(a,b))) ;

\axiom (\forall [ a b ]

carry(a,b) = \cmpult(\add64(a,b), a)) ;

\axiom (\forall [ a b ]

carry(a,b) = \cmpult(\add64(a,b), b)) ;

\proc checksum : [ ptr,ptrend : long* ] -> short =

\var sum : long := 0 \in

\do ptr < ptrend ->

sum := add(sum, *ptr) ; ptr := ptr + 8

\od ;

sum := \extwl(sum, 0) + \extwl(sum,1)

+ \extwl(sum,2) + \extwl(sum,3) ;

sum := \extwl(sum,0) + \extwl(sum,1) ;

\res := \cast(sum, short)

\end

Figure 5: Envisioned program for checksum.

Denali is a packet checksum routine, which computes the 16-
bit sum of a set of 16-bit integers, with wraparound carry.
Three techniques are required to generate efficient code for
this problem: loop unrolling, software pipelining (the com-
putation in one loop iteration of a result that is used on
the next iteration), and word parallelism (in the case of this
example, using 64-bit addition instead of four 16-bit addi-
tions). The current Denali prototype implements loop un-
rolling. We have a design for software pipelining, but haven’t
implemented it yet. In the meantime, to make progress on
this example, we hand-specified the required pipelining by
introducing temporaries to carry intermediate values across
loop iterations. As for word parallelism, we don’t aspire to
do this automatically: we contend this is better done by the
programmer using Denali.

Figure 5 shows the Denali input that we envision. Figure 6
shows the actual input to our current prototype for this
problem. As remarked above, the input uses temporaries
(v1, v2, v3, v4) to hand-specify software pipelining. This
forces us to hand-specify the loop unrolling as well, so we
cannot use Denali’s unroll feature. Denali took about 4
hours to generate code for this program; the code for the
loop body consisted of 10 cycles and 31 instructions.

In addition to the challenge problems above, we have used
Denali on a matrix routine rowop, and on the problem of the
least common power of 2 of two registers (in addition to a
number of problems we invented for ourselves). Although
few in number, these tests give us confidence that the De-
nali approach can provide peak performance on ALU-bound
register-to-register computations. The experiments we have
done to date on memory-bound computations (the checksum
example, and some matrix loops) suggest that Denali will
also be effective on these increasingly important problems.
However, we won’t venture a final conclusion on memory-
bound computations until we have implemented software
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; carry returns the carry bit resulting from the
; unsigned 64-bit sum of its arguments.
(\opdecl carry (long long) long)

(\axiom (forall (a b) (pats (carry a b))
(eq (carry a b) (\cmpult (\add64 a b) a))))

(\axiom (forall (a b) (pats (carry a b))
(eq (carry a b) (\cmpult (\add64 a b) b))))

; unsigned 64-bit carry-wraparound add
(\opdecl add (long long) long)

; associativity of add
(\axiom (forall (a b c) (pats (add a (add b c)))

(eq (add a (add b c)) (add (add a b) c))))
(\axiom (forall (a b c) (pats (add (add a b) c))

(eq (add a (add b c)) (add (add a b) c))))

; commutativity of add
(\axiom (forall (a b) (pats (add a b))

(eq (add a b) (add b a))))

; implementation of add
(\axiom (forall (a b) (pats (add a b))

(eq (add a b) (\add64 (\add64 a b) (carry a b)))))

; main procedure
(\procdecl checksum ((ptr (\ref long))

(ptrend (\ref long))) short
(\var (sum1 long 0) (\var (sum2 long 0)
(\var (sum3 long 0) (\var (sum4 long 0)
(\var (v1 long (\deref ptr))
(\var (v2 long (\deref (+ ptr 8)))
(\var (v3 long (\deref (+ ptr 16)))
(\var (v4 long (\deref (+ ptr 24)))
(\semi
(\do (-> (< ptr ptrend)
(\semi

(:= (sum1 (add sum1 v1)) (sum2 (add sum2 v2))
(sum3 (add sum3 v3)) (sum4 (add sum4 v4)))

(:= (ptr (+ ptr 32)))
(:= (v1 (\deref ptr)))
(:= (v2 (\deref (+ ptr 8))))
(:= (v3 (\deref (+ ptr 16))))
(:= (v4 (\deref (+ ptr 24)))))))

(\var (c1 long) (\var (c2 long) (\var (c3 long)
(\var (s1 long) (\var (s2 long) (\var (s long)
(\semi

(:= (s1 (+ sum1 sum2)))
(:= (c1 (carry sum1 sum2)))
(:= (s2 (+ sum3 sum4)))
(:= (c2 (carry sum3 sum4)))
(:= (s (+ s1 s2)))
(:= (c3 (carry s1 s2)))
(:= (s (+ (\extwl s 0) (+ (\extwl s 1)

(+ (\extwl s 2) (\extwl s 3))))))
(:= (s (+ (\extwl s 0) (+ (\extwl s 1)

(+ c1 (+ c2 c3))))))
(:= (\res (\cast short s))))))))))))))))))))

Figure 6: Actual input to current prototype for

checksum program of figure 5.

pipelining and done more examples, which we plan to do in
the next few months.
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