
RJ 09:0CounterpointA UNITY proof with pure nondeterminismRajeev Joshi 123 March, 19980 IntroductionThis note attempts to distill out the essence of a UNITY proof for a problem posed by J Moore(who in turn got it from Bobby Blumofe). The proof is of interest because it uses the UNITY proofrules for pure nondeterminism, which are not that widely known.Consider a system G with N processes (N > 0) denoted F0 through FN�1 , with processFj (0 � j < N) executing the single statement �j as shown below.program Fjshared ctr : integerlocal oldj ;newj : integerlocal bj : booleanassignf �j g ctr ; bj := newj ; false if bj ^ ctr = oldj� oldj ; bj := ctr ; false if bj ^ ctr 6= oldj� newj ; bj := 1 + oldj ; true if :bjendAssuming pure nondeterminism 2 (i.e., some statement is eventually executed) we are asked toshow the following property: the value of ctr eventually increases ,which is expressed in UNITY logic as(8 C :: ctr = C 7! ctr > C in G) (ctr inc)The rest of this note deals with the proof of this property. Section 1 describes the proof rules forUNITY logic under pure nondeterminism. Section 2 proves a weaker result than (ctr inc), requiringan assumption on initial states of the program. Section 3 shows how to strengthen the result byremoving the assumption of the previous section; this is achieved by adding auxiliary variables tothe program.Notation Throughout this note, identi�ers P ;Q ;R range over predicates, j ranges over 0 : : : (N�1) , and C ranges over the integers.1Dept. of Computer Sciences, The University of Texas at Austin, Email: joshi@cs.utexas.edu2Pure nondeterminism is a special case of minimal progress [JM 93-4] obtained when all guards are true .

RJ 09:11 UNITY LogicThe main operators of UNITY logic [JM 93-4] are initially , co , stable , invariant , transient ,ensures and 7! . The de�nitions of the �rst four are the same as for the standard UNITY model(with unconditional fairness) and are given in the appendix. The de�nitions of transient andensures are di�erent for pure nondeterminism and are given by the equations below, where
ranges over the statements of a program G , and the restricted everywhere brackets [[�]] denotequanti�cation over the reachable state space of G . 3transient Q in G = (8
 :: [[Q) wp:
:(:Q)]])Q ensures R in G = (8
 :: [[Q ^ :R) wp:
:R]])The operator 7! is de�ned in terms of ensures in the usual way [CM 88] .Most of the theorems about 7! in the standard logic carry over to the logic for pure nondeter-minism (e.g., PSP, impossibility, lhs-strengthening, rhs-weakening, cancellation and induction rule).Since the proofs presented in this note use the induction rule, it is reproduced below.Induction Rule for 7! Let M be a total function from states of program G to a set W . Let(W ;�) be well-founded, let w range overW and let P ;Q be predicates on the states of G . Then,(8 w :: P ^ M = w 7! Q _ (P ^ M � w) in G)) P 7! Q in GInterestingly, the operators transient and ensures , as de�ned for pure nondeterminism, satisfysome properties that do not hold in the standard model; some of these are listed in appendix A .2 First SolutionTo begin with, we simplify the problem by adding the following initial condition to each process Fjinitially bj) newj = 1 + oldj in FjAs a result, we can prove the following invariant properties: for each j ,invariant bj) newj = 1 + oldj in GNext, we de�ne the following functions on the state space of program G :nq = (# j :: oldj 6= ctr)nb = (# j :: :bj)where (# j :: Pj) denotes the number of j for which Pj holds. Note that nq and nb both lie in therange 0 : : :N .The proof of the desired property is now as follows. Let � denote the following lexicographicordering on pairs of naturals {(m0 ;n0) � (m1 ;n1) � (m0 < m1) _ (m0 = m1 ^ n0 < n1) ;3See the appendix for a di�erent way of de�ning these operators.

RJ 09:2let C range over the integers, let NQ ;NB range over 0 : : :N , and de�ne P ;Q as follows.[P � ctr = C ^ (nq ;nb) = (NQ ;NB)][Q � ctr > C _ (ctr = C ^ (nq ;nb) � (NQ ;NB))]We observe that the following Hoare triples are true:fP ^ bj ^ ctr = oldj g ctr ; bj := newj ; false fQgfP ^ bj ^ ctr 6= oldj g oldj ; bj := ctr ; false fQgfP ^ :bj g newj ; bj := 1 + oldj ; true fQgThus we havetrue) f Hoare triples above g(8 j :: [P) wp:�j :Q])) f [R]) [[R]] , de�nition of ensures gP ensures Q in G) f Basis for 7! gP 7! Q in G� f De�nition of P ;Q gctr = C ^ (nq ;nb) = (NQ ;NB) 7! ctr > C _ (ctr = C ^ (nq ;nb) � (NQ ;NB)) in G) f 7! induction, using the fact that (nq ;nb) is bounded from below by (0 ; 0) gctr = C 7! ctr > C in G3 Second SolutionInformally speaking, we needed the initial conditions in the previous proof in order to ensure thatthe counter value is nondecreasing. Without these conditions, we can construct executions in whichthis property is not true { for instance, consider an execution starting with ctr ; old0 ;new0 ; b0 =1 ; 1 ; 0 ; true which starts by executing statement �0 . An examination of the program text showsthat in fact the only step of process Fj that might reduce the value of ctr during an execution is its�rst execution of the �rst alternative of �j ; subsequent steps of Fj do not reduce ctr . It turns out,then, that property (ctr inc) is still true, and the initial conditions we added are not really needed.In this section, we show how to prove the result without these conditions, by introducing additionalauxiliary variables tj , as shown below.

RJ 09:3program Fjshared ctr : integerlocal oldj ;newj : integerlocal bj : booleanlocal tj : booleaninitially tj = falseassign ctr ; bj ; tj := newj ; false ; true if bj ^ ctr = oldj� oldj ; bj := ctr ; false if bj ^ ctr 6= oldj� newj ; bj := 1 + oldj ; true if :bjendInformally speaking, the auxiliary variable tj acts as a \trigger", which is set upon the �rst executionof the �rst alternative of �j . Once tj is set, process Fj does not decrease the value of ctr . Formally,instead of the invariants used in the previous solution, we now have, for each jinvariant tj ^ bj) newj = 1 + oldj in GWe de�ne nq and nb as before; in addition, we de�nent = (# j :: :tj)Note that, like nq and nb , the quantity nt lies in the range 0 : : :N .The rest of the proof is similar, except that the lexicographic ordering � is now applied totriples. For any integer C and any NQ ;NB ;NT in the range 0 : : :N , de�ne P ;Q as[P � ctr = C ^ (nt ;nq ;nb) = (NT ;NQ ;NB)][Q � ctr > C _ (ctr = C ^ (nt ;nq ;nb) � (NT ;NQ ;NB))]Then, we havetrue) f Calculating Hoare triples as before g(8 j :: [P) wp:�j :Q])) f [R]) [[R]] , de�nition of ensures gP ensures Q in G) f Basis for 7! gP 7! Q in G) f 7! induction, using the fact that (nt ;nq ;nb) is bounded from below by (0 ; 0 ; 0) gctr = C 7! ctr > C in G

RJ 09:4A UNITY for Pure NondeterminismI shall de�ne primed and unprimed versions of all UNITY operators except initially ; the primedversions are introduced in order to keep the treatment of the Substitution Axiom simple. Thefollowing notation is used: the initial condition of program G is denoted G :IC and the set ofstatements of G is denoted G :Act . As before,
 ranges over G :Act .initially Q in G = [G :IC) Q]Q co0 R in G = [Q) R] ^ (8
 :: [Q) wp:
:R])stable0 Q in G = Q co0 Q in Ginvariant0 Q in G = initially Q in G ^ stable0 Q in Gtransient0 Q in G = (8
 :: [Q) wp:
:(:Q)])Q ensures0 R in G = (Q ^ :R) co0 (Q _ R) in G ^ transient0 (Q ^ :R) in GThe operator 7!0 is de�ned as the transitive, disjunctive closure of ensures 0 in the usual way.Finally, we add the following postulate, which gives the relationship between unprimed operatorsand their primed counterparts.A.0 Substitution AxiomFor op ranging over stable , invariant and transientop Q in G = (9 J : invariant0 J in G : op0 (Q ^ J) in G)For op ranging over co , ensures and 7!Q op R in G = (9 J : invariant0 J in G : (Q ^ J) op0 (R ^ J) in G)A.1 Program UnionLet F denote a nonempty set of programs which have the same set of variable declarations. De�nethe union of the set as a program H , having the same variables as the programs in F , and havingthe initial condition and set of statements de�ned below.[H :IC = (8G : G 2 F : G :IC)]H :Act = ([G : G 2 F : G :Act)Union TheoremLet H denote the union of a set F of programs, as de�ned above. Let P ;Q range over predicateson the state space of the programs. Then we have, with G ranging over F ,P co0 Q in H � (8G :: P co0 Q in G)transient0 P in H � (8G :: transient0 P in G)

RJ 09:5A.2 Properties of ensuresHere are some properties of ensures for pure nondeterminism that do not hold in the standardmodel. For any bag X of predicates, any nonempty bag Z of predicates, and any predicatesP ;Q ;R;S ,(8 P : P 2 X : P ensures Q in G) � (9 P : P 2 X : P) ensures Q in G[P) Q] ^ Q ensures R in G) P ensures R in G (lhs-str)R co S in G ^ P ensures Q in G) P ^R ensures Q ^ S in G (Strong PSP)
Acknowledgments. I am grateful to J Moore, who posed the problem and commented on the originalsolution, to Jay Misra, who invented the simpler program shown here and encouraged me to writethis note, and to Pete Manolios, who pointed out several typographical errors in a previous version.(End of Acknowledgments.)References[CM 88] K.M. Chandy and J.Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988[JM 93-4] Misra, J., Notes on the new UNITY logic, unpublished manuscripts, 1993-4Available from ftp://ftp.cs.utexas.edu/pub/psp/unity/new unity

