RJ 09:0

Counterpoint
A UNITY proof with pure nondeterminism

Rajeev Joshi !

23 March, 1998

0 Introduction

This note attempts to distill out the essence of a UNITY proof for a problem posed by J Moore
(who in turn got it from Bobby Blumofe). The proof is of interest because it uses the UNITY proof
rules for pure nondeterminism, which are not that widely known.

Consider a system G with N processes (N > 0) denoted Fy through Fy_; , with process
F; (0 <j < N) executing the single statement a; as shown below.

program [}
shared ctr : integer

local old;, new; : integer
local b; : boolean
assign
{a;} ctr, bj := new; , false if b; A ctr = old;
~ old; , bj :=ctr, false if b; A ctr # old;

~ newj, bj =1+ old; , true if —b;

end

Assuming pure nondeterminism 2 (i.e., some statement is eventually executed) we are asked to
show the following property:

the value of ctr eventually increases ,
which is expressed in UNITY logic as
VC:ctr=C +— ctr>C inG) (ctr inc)

The rest of this note deals with the proof of this property. Section 1 describes the proof rules for
UNITY logic under pure nondeterminism. Section 2 proves a weaker result than (ctr inc), requiring
an assumption on initial states of the program. Section 3 shows how to strengthen the result by
removing the assumption of the previous section; this is achieved by adding auxiliary variables to
the program.

Notation Throughout this note, identifiers P, @, R range over predicates, j ranges over 0 ...(N —
1), and C ranges over the integers.

1Dept. of Computer Sciences, The University of Texas at Austin, Email: joshi@cs.utexas.edu
2Pure nondeterminism is a special case of minimal progress [JM 93-4] obtained when all guards are true .

RJ 09:1

1 UNITY Logic

The main operators of UNITY logic [JM 93-4] are initially , co , stable , invariant , transient |,
ensures and — . The definitions of the first four are the same as for the standard UNITY model
(with unconditional fairness) and are given in the appendix. The definitions of transient and
ensures are different for pure nondeterminism and are given by the equations below, where ~
ranges over the statements of a program G , and the restricted everywhere brackets [-]| denote
quantification over the reachable state space of G . 3

transient @ in G = (Vv [Q = wpy.(-Q)])

Q ensures R inG = (Vv :[QA-R= wp~y.R])
The operator — is defined in terms of ensures in the usual way [CM 8§] .

Most of the theorems about — in the standard logic carry over to the logic for pure nondeter-

minism (e.g., PSP, impossibility, lhs-strengthening, rhs-weakening, cancellation and induction rule).
Since the proofs presented in this note use the induction rule, it is reproduced below.

Induction Rule for — Let M be a total function from states of program G to a set W. Let
(W, <) be well-founded, let w range over W and let P, @ be predicates on the states of G . Then,

Vw: PAM=w ~ @V (PN M<w) inG) = P — @ inG

Interestingly, the operators transient and ensures , as defined for pure nondeterminism, satisfy
some properties that do not hold in the standard model; some of these are listed in appendix A .

2 First Solution

To begin with, we simplify the problem by adding the following initial condition to each process Fj
initially b; = new; =1+ old; in F}

As a result, we can prove the following invariant properties: for each j |
invariant b; = new; =1 +old; in G

Next, we define the following functions on the state space of program G :

ng = (#j = old; # ctr)

nb=(#j = —bj)
where (# j = P;) denotes the number of j for which P; holds. Note that ng and nb both lie in the
range ... N .

The proof of the desired property is now as follows. Let < denote the following lexicographic
ordering on pairs of naturals —

(m0,n0) < (m1,n1) = (m0<mil) V (m0=mlAn0<nl) ;

3See the appendix for a different way of defining these operators.

RJ 09:2

let C range over the integers, let NQ, NB range over (... N , and define P, Q as follows.

[P
[@Q

We observe that the following Hoare triples are true:

ctr=C A (ng,nb) = (NQ, NB)]
ctr > C V (ctr=C A (ng,nb) < (NQ,NB))]

{P A bj A ctr = old;} ctr, b; := new; , false {Q}
{P A bj A ctr # old;} old; , bj := ctr, false {Q}
{P A —b;j} new;, bj := 1+ old;, true {Q}

Thus we have

true
= { Hoare triples above }
(Vg = [P = wp.a.Q)])
= {[R] = [R], definition of ensures }

P ensures @ in G
= { Basis for — }
P — @ inG
{ Definition of P, Q }
ctr = C A(ng,nb) = (NQ,NB) +— ctr>C V (ctr=CA(ng,nb) <(NQ,NB)) in G
= { — induction, using the fact that (ng, nb) is bounded from below by (0, 0) }
ctr=C +— ctr>C inG

3 Second Solution

Informally speaking, we needed the initial conditions in the previous proof in order to ensure that
the counter value is nondecreasing. Without these conditions, we can construct executions in which
this property is not true — for instance, consider an execution starting with ctr, oldy, newy, by =
1,1, 0,true which starts by executing statement ap . An examination of the program text shows
that in fact the only step of process F; that might reduce the value of ctr during an execution is its
first execution of the first alternative of a; ; subsequent steps of F; do not reduce ctr . It turns out,
then, that property (ctr ¢nc) is still true, and the initial conditions we added are not really needed.
In this section, we show how to prove the result without these conditions, by introducing additional
auxiliary variables ¢; , as shown below.

RJ 09:3

program [}

shared ctr : integer
local old;, new; : integer
local b; : boolean
local t; : boolean
initially ¢ = false

assign
ctr, bj, t; ;= new; , false, true if b; A ctr = old;
~ old; , bj :=ctr, false if b; A ctr # old;
~ new; , bj := 1 + old; , true if —b;
end

Informally speaking, the auxiliary variable ¢; acts as a “trigger”, which is set upon the first execution
of the first alternative of a;; . Once ¢; is set, process Fj; does not decrease the value of ctr . Formally,
instead of the invariants used in the previous solution, we now have, for each j

invariant t Ab; = mnew; =14 old; in G
We define nq and nb as before; in addition, we define
nt = (#3j = ~t))

Note that, like ng and nb , the quantity nt lies in the range 0...N .
The rest of the proof is similar, except that the lexicographic ordering < is now applied to
triples. For any integer C and any N@Q, NB, NT in the range 0 ... N | define P, Q as

[P = ctr=C A (nt,ng,nb)=(NT,NQ,NB)]

Q@ = ctr>C V (ctr=C A (nt,ng,nb) < (NT,NQ, NB))]
Then, we have
true
= { Calculating Hoare triples as before }
(Vg = [P = wp.oj.Q])
= {[R] = [R], definition of ensures }
P ensures @ in G
= { Basis for — }
P - Q inG
= { — induction, using the fact that (nt, ng, nb) is bounded from below by (0, 0, 0) }

ctr=C = ctr>C in(G

RJ 09:4

A UNITY for Pure Nondeterminism

I shall define primed and unprimed versions of all UNITY operators except initially ; the primed
versions are introduced in order to keep the treatment of the Substitution Axiom simple. The
following notation is used: the initial condition of program G is denoted G.IC and the set of
statements of G is denoted G.Act . As before, v ranges over G.Act .

initially @ in G = [G.IC = Q]
Q co R inG = [Q@Q=R] N (Vy :: [Q= wp..R])
stable’ Q inG = Q co Q inG
invariant’ @ in G = initially @ in G A stable’ Q in G
transient’ Q in G = (Vv : [Q = wp.y.(—Q)])
Q ensures’ R in G = (QA-R) co' (QVR) in G A transient’ (QA-R) in G

The operator —' is defined as the transitive, disjunctive closure of ensures ’ in the usual way.

Finally, we add the following postulate, which gives the relationship between unprimed operators
and their primed counterparts.

A.0 Substitution Axiom

For op ranging over stable , invariant and transient
op Q@ inG = (IJ: invariant’ J in G: op’ (QAJ) in G)
For op ranging over co , ensures and —

Q op R inG = (3J: invariant’ J in G: (QAJ) op' (RAJ) in G)

A.1 Program Union

Let F denote a nonempty set of programs which have the same set of variable declarations. Define
the union of the set as a program H , having the same variables as the programs in F , and having
the initial condition and set of statements defined below.

[HIC=NVG: GeF: G.IC)]
HAct=UG: GeF: G.Act)

Union Theorem
Let H denote the union of a set F of programs, as defined above. Let P,) range over predicates
on the state space of the programs. Then we have, with G ranging over F ,

Pco Q@ inH = (VG =P co Q inG)
transient’ P in H = (VG :: transient’ P in G)

RJ 09:5

A.2 Properties of ensures

Here are some properties of ensures for pure nondeterminism that do not hold in the standard

model. For any bag X of predicates, any nonempty bag Z of predicates, and any predicates
P? Q? R? S)

(VP: PeX: P ensures Q inG) = (3P: PeX: P) ensures) in G
[P= Q] N Q ensures R in G P ensures R in G (lhs-str)
Rco S inG AN P ensures () in G PAR ensures QA S in G (Strong PSP)

U

Acknowledgments. I am grateful to J Moore, who posed the problem and commented on the original
solution, to Jay Misra, who invented the simpler program shown here and encouraged me to write

this note, and to Pete Manolios, who pointed out several typographical errors in a previous version.
(End of Acknowledgments.)

References

[CM 88] K.M. Chandy and J.Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988

[JM 93-4] Misra, J., Notes on the new UNITY logic, unpublished manuscripts, 1993-4
Available from ftp://ftp.cs.utexas.edu/pub/psp/unity/newunity

