
Seuss for Java
Language Reference

Rajeev Joshi1

12 February 1998

Abstract

The programming modelSeusscomprises of (i) a notation for writing concurrent programs, (ii) a logic
for proving program properties and (iii) an operational semantics for assigning a meaning to program exe-
cutions. Seuss is based on the observation that concurrent programs typically consist of large amounts of
sequential code, which are often written, understood, and reasoned about in isolation, while concurrency
is made explicit only at the highest level, in deciding how toorchestrate the executions of these sequential
programs. Consequently, the Seuss notation, in its most abstract form [Misra 96], describes structuring
constructs for organising sequential programs written in any programming language. This document de-
scribes the languageSeuss for Java, which is an adaptation of the original Seuss notation for use with the
programming languageJava [GJS 96]. The document provides a syntax in extended Backus-Naur form
(EBNF) and an operational semantics for the language. It is intended for programmers with a knowledge of
Java; thus, althoughSeuss for Javaprograms contain sections of Java code, details of the Java syntax (e.g.,
the shape of expressions, class declarations, packages, etc.) are not described in this document, nor are the
meanings of Java statements.

The main body of this document describes the language in detail and the appendices provide the full
syntax in EBNF and illustrate the language usage with a set ofsmall examples.

The language described here is based largely on the the original Seuss publication notation [Misra 96]
and the languageSeuss for C++[Krüger 96]. Its current form was debated and discussed in the meetings
of the Seuss Group at the University of Texas at Austin, attended by Will Adams, Lorenzo Alvisi, Rajeev
Joshi, Calvin Lin, Pete Manolios, Jay Misra, Todd Smith and Raymond Tse.

1Dept. of Computer Sciences, The University of Texas at Austin, Email: joshi@cs.utexas.edu

0

Contents

0 Notation and Terminology 2

1 Programs and Modules 3

2 Boxes and Items 3
2.0 Boxes 3

2.0.0 Parameterised boxes 4
2.1 Items 4

2.1.0 Parameterised Items 5
2.2 Box Body 5
2.3 Methods 7

2.3.0 Total Methods 7
2.3.1 Partial Methods 8

2.4 Actions 8

3 Imports and Exports 9
3.0 Imports 9
3.1 Exports 10
3.2 Names 11

4 Link Declarations 11

5 Program Execution 12
5.0 Needs 12
5.1 Run Set 13

6 Pragmas and Comments 14

A EBNF 15

B Keywords 16

C Examples 17

1

0 Notation and Terminology

EBNF conventions The grammar is described using EBNF, whose conventions and meta symbols are sum-
marised below.

Nonterminals are enclosed by the pairh and i (e.g., h programi)
Keywords are in boldface, (e.g.,import)
Terminal symbols are enclosed within single quotes, (e.g.,‘-->’)f E g represents 0 or more occurrences of E
[E] represents 0 or 1 occurrence of E
(and) are used for grouping
| denotes a choice of productions

As already stated, we are not interested in details of Java syntax. Thus the production rules we describe
will contain references to nonterminals which will expand to sections of Java code. We denote all such
nonterminals by suffixing them with the wordcode (e.g., h initialisation codei , h body codei). We will
also state syntactic and semantic restrictions on the kindsof Java statements and declarations that such a
nonterminal may produce. The syntactic restrictions are expected to be checked by the Seuss compiler.

Identifiers and Declarations We use the following terminology to describe the various kinds of identifiers
that are needed in the following subsections.� A simple identifieris a string which contains onlyJava lettersandJava digits[GJS 96], starts with a

Java letter and is not a Seuss keyword (appendix B) or Java keyword. Variablesb; c will range over
simple identifiers.� A module identifieris either a simple identifier or a string of the formM :c where M is a module
identifier andc is a simple identifier, e.g.,Library andLibrary.Channels . VariablesK ;L;M
will range over module identifiers.� A qualified identifieris an identifier of the formM :c where M is a module identifier andc is a
simple identifier, e.g.,Library.Channels.Fifo Channel . Variablesp; q ; r will range over
qualified identifiers.� A general identifieris either a simple identifier or a qualified identifier. Variables x ; y will range over
general identifiers.

A simple identifier can be accessed only at those points in a program where it isvisible. Visibility will be
defined inx3.2. At each point in the program where a simple identifierc is visible, it can be replaced by a
unique qualified identifierM :c , which is called theresolventof c .

A simple identifierb is said to resolve to abox nameat a program point only if its resolvent isM :b and
moduleM exports a box (x2, x3.1) namedb . Similarly, a simple identifierc is said to resolve to anitem
nameat a program point only if its resolvent isM :c and M exports anitemnamedc .

Restrictions on programs In addition to the syntactic constraints imposed by the grammar, Seuss programs
satisfy certain additional restrictions. These restrictions are classified into three categories, based on the kinds
of errors that result from violating these restrictions:

2

� A static errorcan be detected and reported by the compiler, e.g., declaring two variables with the same
name.� A checked runtimeerror can be detected and reported by the runtime system, e.g., accessing an array
out of bounds.� An unchecked runtimeerror may not be detectable by the runtime system, e.g., execution of a function
that does not terminate. Neither the compiler nor the runtime system provides any guarantees in the
presence of such errors; it is the programmer’s responsibility to ensure that they do not arise.

1 Programs and Modulesh programi ::= f hmodule definitioni ghmodule definitioni ::= module hmodule identifieri ‘f’ hmodule bodyi ‘g’hmodule identifieri ::= h simple identifieri f ‘ .’ h simple identifieri ghmodule bodyi ::= [h local i]f h entityi j h import i j h exporti j h link i j h needsi gh local i ::= local ‘f’ h local codei ‘g’

A program is a list of module definitions. Amodulehas alocal section (which is optional) and any com-
bination ofentity declarations (x2), import declarations (x3.0), exportdeclarations (x3.1), link declarations
(x4), andneedsdeclarations (x5.0).

Themodule identifierappearing in the rule formodule definitionis called thenameof that module.

Restriction N (Static) Modules in a program have distinct names.

As a consequence of the restriction above, each module in a program may be referred to unambiguously
by its associated name.

Restriction (Static) A program has a module namedmain.

Notation We write “M contains [decl]” to denote that the declarationdecl occurs in the module namedM . Theenvironmentof a moduleM in a program consists of the set of modules other thanM .

2 Boxes and Items

2.0 Boxesh entityi ::= h boxi j h itemih boxi ::= h simple boxi j h parameterised boxih simple boxi ::= box h simple identifieri h box bodyi
3

There are two kinds of entities that may be declared within modules –boxesanditems. A box is like a
Java class, with variables which define its state and procedures which are used to inspect or change this state.
Unlike Java, however, all variables of a box are private to itand can be referred to within the procedures in
that box only. Boxes provide a convenient way for declaring commonly used types, e.g., semaphore, channel.

Thesimple identifierappearing in the rule forsimple boxis called thenameof the box. A box declaration
may be parameterised (x2.0.0); however, its name consists only of the simple identifier appearing after the
keywordbox in the declaration.

We say that two identifiers whose resolvent is the same box name denote thesametype.

2.0.0 Parameterised boxesh parameterised boxi ::= box h identifieri ‘ (’ h box parameter listi ‘)’ h box bodyih box parameter listi ::= h box parameteri f ‘ ,’ h box parameteri gh box parameteri ::= h identifieri ‘ :’ h simple box namei
Each argument in a parameterised box declaration is of the form c : X wherec is a simple identi-

fier denoting the parameter name andX is a simple or qualified identifier denoting a box declared without
parameters.

Restriction (Static) The names of the parameters are distinct. The resolvent of thegeneral identifierin the
rule forparameterised type, and the resolvent of thesimple box namein the rule forbox parameter, are both
box names.

2.1 Items h itemi ::= h simple itemi j h parameterised itemih simple itemi ::= item h identifier listi h simple item typeih identifier listi ::= h simple identifieri f ‘ ,’ h simple identifieri gh simple item typei ::= (‘ :’ h simple box namei ‘ ;’) j h box bodyih simple box namei ::= h general identifierih general identifieri ::= h simple identifieri j h qualified identifierih qualified identifieri ::= hmodule identifieri ‘ .’ h simple identifieri
An item is an instance of a box, thus, it is like a Java object (which is an instance of a Java class).

Convention The compiler replaces every item declaration of the formitem x f body g by the two dec-
larationsbox Bx f body g anditem x : Bx whereBx is a name unique to this declaration which
is introduced by the compiler.

With this convention, we define thetypeof an item to be the resolvent of the box name appearing in the
item declaration.

4

Restriction (Static) The entities declared within a module have distinct names. Thesimple type namein
an item declaration resolves to a box name.

This restriction, along withRestriction N above, allows an entityc declared within moduleM to be
associated with the unique qualified identifierM :c .

Example Some examples of simple box and item declarations are given below.

module L.M
{ box Fifo { ... }

item ch0 , ch1 : Fifo ;
item printq { ... }

}

These statements declare a module namedL.M with a box namedFifo, two items namedch0 andch1 of
typeFifo and an item namedprintq of a type with a unique, compiler generated name. The qualified
names of the declared entities areL.M.Fifo, L.M.ch0, L.M.ch1 andL.M.printq . Within the
moduleM, the box identifiersFifo andL.M.Fifo resolve to the same qualified identifierL.M.Fifo;
thus, they denote the same type.

2.1.0 Parameterised Itemsh parameterised itemi ::= item h identifier listi ‘ :’ h parameterised typei ‘ ;’h parameterised typei ::= h general identifieri ‘ (’ h item parameter listi ‘)’h item parameter listi ::= h item parameteri [‘ ,’ h item parameteri]h item parameteri ::= h general identifieri
An item of a parameterised box is declared by providing a listof items, one for each parameter.

Restriction (Static) The resolvent of eachitem parameteris an item name. The list of items provided when
declaring an item of any box has the same length and sequence of types as the declaration of the item’s type.

Example The following example illustrates the syntax for declaringa parameterised box and instantiating
it.

box B (chan : Fifo , sem : Semaphore)
{ .. box body, with references to chan and sem .. }

item c : Fifo ;
item s : Semaphore ;
item x : B (c , s) ;

2.2 Box Bodyh box bodyi ::= ‘f’ h local declarationsi h proceduresi ‘g’h local declarationsi ::= [h box localsi] [h initialisationsi]

5

h box localsi ::= local ‘f’ h local codei ‘g’h initialisationsi ::= init ‘f’ h initialisation codei ‘g’

The body of a box consists of a local section and procedure declarations. Thelocal declarationsdefine
the types, variables and functions that are used by the procedures declared later; they may also specifybox
initialistationswhich consist of a Java program which is executed when an itemis created at the beginning
of an execution.

Restriction (Static) The undeclared identifiers inlocal coderefer to Java types declared within the local
declarations for the current module. The undeclared identifiers in initialisation codeeither (i) are declared
in the local section for this box, (ii) are declared in the local section of the current module, or (iii) have
resolvents that are item names.

Restriction (Checked runtime) The initialisation codeand the procedures in a box may raise exceptions;
it is up to the implementation to decide whether to abort the program execution.

Restriction (Unchecked runtime) The initialisation codeis a terminating Java program.

Examples An example of local declarations is shown below.

box Semaphore
{

local
{ class Queue { .. }

Queue q ; boolean avail ;
boolean ready(int t) { ... }

}
init { avail = true ; }

...
}

The first line within the local section defines a new Java classcalledQueue which is to be used to store a
sequence of integers. The second line defines two variables –an instance of the Queue class and a boolean
variable for denoting whether the semaphore is available. The third line defines a locally accessible function
ready, which has return type boolean and one value parameter of integer type. The fourth line defines the
initialisation commands for the boxSemaphore : the variableavail is to be initialised totrue.

Proceduresh proceduresi ::= f hmethodi j h actioni g
A procedure may be a method or an action; these may occur in anyorder in the box body. Methods

may be invoked by procedures in other items, thus they are named and may take parameters. Actions are
autonomously executing procedures which cannot be invokedby other procedures; thus they may be unnamed
and do not take any parameters.

6

Notation We say that a method is declared for an item if it is declared inthe box for that item.

Restriction (Static) No two named procedures in a box have the same name.

2.3 Methods

There are two kinds of methods,total methodsandpartial methods. A total method is a nonblocking program
which is expected to terminate; its syntax is very similar tothat of class member functions in Java. A partial
method has a special form, which is described below(x2.3.1).

The syntax for a method call is the same as the syntax for a member function call in Java. For instance,
ch.put(n) denotes a call with the parametern to the methodput in itemch.

Notation For a methodf in an item with resolventq that contains a call to a methodg in an item with
resolventr , we write q :f calls r :g .

Requirement Acyclicity (Static) The transitive closure of thecalls relation defined above is acyclic.

2.3.0 Total Methodshmethodi ::= h total methodi j h partial methodih total methodi ::= total method h total method headi h total commandih total method headi ::= h type specifieri h procedure headih type specifieri ::= h general identifierih procedure headi ::= h simple identifieri ‘ (’ [h formal parametersi] ‘)’h formal parametersi ::= h argument declarationi f ‘ ,’ h argument declarationi gh argument declarationi ::= h type specifieri h simple identifierih total commandi ::= ‘f’ h body codei ‘g’

The type specifierin total method headdefines the return type of the total method. As in Java, a type
specifier ofvoid declares a pure procedure. The body can contain any Java statements and declarations.

Restriction (Static) All type specifiersoccurring intotal method headandargument declarationeither (i)
are built in Java types, (ii) are declared in the local code for the box, or (iii) are declared in the local code for
the current module.

Restriction (Static) The undeclared identifiers inbody codeeither (i) are declared in the local section of
the box, (ii) are declared in the local section of the currentmodule, or (ii) resolve to item names.

Restriction (Static) The body code does not contain any calls to partial methods.

Restriction (Unchecked runtime) The body is a terminating Java program.

7

2.3.1 Partial Methodsh partial methodi ::= partial method h procedure headi h partial commandih partial commandi ::= ‘f’ [h local i] h alternative listi ‘g’h alternative listi ::= (h alternativei f h alternative typei h alternativei g)h alternative typei ::= ‘[+]’ j ‘[-]’h alternativei ::= (h preconditioni [‘ ;’ h preprocedurei] ‘-->’ h total commandi)j (‘ ;’ h preprocedurei ‘-->’ h total commandi)h preconditioni ::= ‘(’ h boolean codei ‘)’h preprocedurei ::= h qualified method namei ‘ (’ h parameter codei ‘)’h qualified method namei ::= h item namei ‘ .’ h simple identifierih item namei ::= h general identifieri
A partial method is a pure procedure, with no return type mentioned in its header. It consists of local Java

declarations followed by a nonempty list ofalternatives. Variables and functions declared as locals are visible
only within the alternatives. An alternative may bepositiveor negative, as indicated by the prefix ‘[+]’ or
‘[-]’. The first alternative has no prefix; it is considered to be a positive alternative. Thepreconditionis a
Java expression; it is expected to be of boolean type. Thepreprocedureis a call to a partial method of another
item. Either thepreconditionor thepreproceduremay be absent, but not both. When the precondition is
omitted, it is assumed to be equivalent totrue.

A partial methodacceptsor rejectseach call made upon it. When a partial method is called, the precon-
ditions of its alternatives are evaluated (in unspecified order) and the unique alternative whose precondition
is true (see restriction below) is invoked. The method accepts if and only if some positive alternative accepts
the call; the method rejects the call otherwise. An alternative of the formp --> S, with preconditionp and
total commandS, always accepts calls made upon it; its execution consists of executingS . An alternative
of the formp ; f --> S, with preconditionp, preproceduref and total commandS, executes by first
callingf. If the call onf is accepted, thenS is executed, and the alternative accepts, otherwise, if thecall on
f is rejected, the alternative rejects.

Restrictions The arguments and total command in a partial method satisfy the same restrictions as those
described for total methods.

Restriction (Static) The undeclared identifiers inboolean codeandparameter codeare declared in the
local section of the current procedure, (ii) the local section of the current box, or (iii) the current section of
the current module. Thepreprocedureis a valid partial method name for theitem name. It has a signa-
ture [GJS 96] that matchesparameter code.

Restriction (Unchecked runtime) The preconditions of the alternatives in a partial method are disjoint.
A precondition may cause side-effects only from states in which it evaluates to true and only when the
preprocedure is absent.

2.4 Actionsh actioni ::= h simple actioni j h quantified actioni
8

h simple actioni ::= h simple total actioni j h simple partial actionih simple total actioni ::= total action [h simple identifieri] h total commandih simple partial actioni ::= partial action [h simple identifieri] h partial commandi
As stated above, an action is a procedure that cannot be invoked by other procedures; instead, the sched-

uler guarantees that every action is executed infinitely often in an execution. Quantified actions define col-
lections of parameterised actions; they are described below. The restrictions stated for total (partial) methods
also apply to total (partial) actions.

Restriction (Static) A partial action does not have any negative alternatives.

Quantified Actionsh quantified actioni ::= forall h identifieri ‘ :’ h rangei h quantified bodyih rangei ::= h constanti ‘ ..’ h constantih quantified bodyi ::= h actioni j (‘f’ h actionsi ‘g’)h actionsi ::= h actioni f h actioni g
A quantified action is a collection of actions parameterisedby an index variable, which may appear in the

body of the action. The range of this variable is required to be determinable at compilation time, hence it is
restricted to be of the forml : : : h where l and h are integer constants.

When l � h , such a quantified action declaration with index variablej is equivalent to writingh�l+1
action declarations, one for each valuen in the rangel : : : h , with free occurrences ofj in quantified body
being replaced byn .

3 Imports and Exports

Import declarations allow identifiers declared in one module to be used in another without qualification.
Export declarations identify which identifiers are to be made visible outside a module; they serve the same
purpose aspublicdeclarations in Java packages.

3.0 Importsh import i ::= hmodule importi j h entity importihmodule importi ::= import hmodule name listi ‘ ;’hmodule name listi ::= hmodule namei f ‘ ,’ hmodule namei gh entity importi ::= from hmodule namei import h identifier listi ‘ ;’

As in Java, an import declaration allows identifiers exported by another module to be referred to by a
simple name consisting of a single identifier. In the absenceof an import declaration, an entity exported by
a module can be referenced in another module only by using a qualified identifier. There are two kinds of
import declarations –module importsandentity imports. A module import has the formimport list wherelist is a list of module identifiers; such a declaration is equivalent to writingimport M for eachM inlist . We say that the declarationimport M implicitly imports c from M for each simple identifier

9

c exported byM (x3.1). An entity import has the formfrom M import list where list is a list
of simple identifier; such a declaration has the same effect as writing from M import c for each c
in list . We say that the declarationfrom M import c explicitly imports c from M . We write
importedto mean explicitly imported or implicitly imported.

Restriction (Static) A simple identifier may be imported from a moduleM only if it has been exported
by M .

Examples An example of the use of imports is shown below. Assume that the boxFifo is declared in
the moduleBuffers and thatWeakSemaphore andStrongSemaphore are declared in the module
Semaphores.

module User
{ from Semaphores import WeakSemaphore ;

import Buffers ;

item ch : Fifo ;
item wsem : WeakSemaphore ;
item ssem : Semaphores.StrongSemaphore ;

}

3.1 Exportsh exporti ::= export h unit name listi ‘ ;’h unit name listi ::= h unit namei f ‘ ,’ h unit namei gh unit namei ::= h simple identifieri [‘ (’ h general identifier listi ‘)’]

Export declarations allow entities declared in a module to be imported (x3.0) by other modules. An export
declaration has the formexport list where list is a list of entity names; such a declaration has the same
effect as writingexport x for every x in list . We say that the declarationexport x results in the
identifier x beingexported bythe current module.

Restriction (Static) Every exported identifier resolves to an entity name. If a parameterised box is exported,
then each simple identifier occuring in the parameter list isexplicitly exported by the module.

Example As an illustration, we note that the following example violates the restriction above:

module Incorrect
{ from Buffers import Fifo ;

box B (chan : Fifo) { ... }

export B (Fifo) ;
}

The example would be legal if the declarationexport Fifo precedesexport B (Fifo), or if the
latter were changed toexport B (Buffers.Fifo) .

10

3.2 Names

We say that a moduleK is belowa moduleM , denotedK @M , provided any of the following holds:� M contains [import K]� for somex , M contains [from K import x]� for some moduleL , K @ L and L @M
Restriction (Static) The relation@ over modules is asymmetric.

Restriction U (Static) For any moduleM , the collection of simple identifiers consisting of� the identifiers declared inM� the identifiers explicitly imported from other modules� the identifiers implicitly imported from other modules

does not contain any duplicates.

The collection described above therefore corresponds to asetof identifiers; we refer to it as the set of
visible identifiers ofM .

Resolution UsingRestriction U, a simple identifierc that is visible inM corresponds to a unique quali-
fied identifierK :c , as follows. If c is declared inM then K is M ; otherwise,c is imported andK is
the module from which it is imported. We say thatK :c is theresolventof c and thatc resolves toK :c .

Notation A qualified identifier resolves to itself.

4 Link Declarationsh link i ::= h inneri j h outerih inneri ::= inner h item namei hmethod name listi ‘ ;’h outeri ::= outer h item namei hmethod name listi ‘ ;’hmethod name listi ::= (‘+’ j ‘-’) ‘ f’ hmethod namei f ‘ ,’ hmethod namei g ‘g’hmethod namei ::= h identifieri
Link declarations are used to state assumptions about the environment and to assert guarantees for it.

There are two kinds of link declarations;innerdeclarations andouterdeclarations.

11

Notation Let S denote the set of methods of an item. For any subsetT of S , we write T to mean the
set S n T .

A declaration of the forminner x + f T g asserts that items declared in the current module may
invoke only those methods ofx that are present inT . A declaration of the forminner x - f T g
asserts that items declared in the current module may invokeonly those methods ofx that are present inT .

A declaration of the formouter x + f T g states that items in the environment (x1) of the current
module may invoke only those methods ofx that are present inT . A declaration of the formouter x -f T g states that items in the environment of the current module may invoke only those methods ofx that
are present inT .

Restriction (Static) A module contains at most one outer and one inner declarationfor any item. Each
identifier inmethod name listis the name of a method declared in that item.

Notation Let q denote the resolvent of identifierx in moduleM . Then,� If M contains [inner x + T] , we write (q ;T) 2 M :inner� If M contains [inner x - T] , we write (q ;T) 2 M :inner
We use a similar convention for outer declarations.

Restriction (Static) If (q ;T) 2 M :inner , an item declared within moduleM can invoke only those
methods onq that are inT .

Restriction (Static) The inner and outer declarations in a program satisfy the following property, which is
called theLink Constraint[Misra 94].(8M ;K ; q ;S ;T :: (M 6= K ^ (q ;S) 2 M :inner ^ (q ;T) 2 K :outer)) S � T)
5 Program Execution

In this section, we explain the syntax forneedsdeclarations and discuss how they are used to define the
executions of a Seuss program.

5.0 Needsh needsi ::= h simple identifieri needs h item name listi ‘ ;’h item name listi ::= h item namei f ‘ ,’ h item namei g
needs declarations provide a way for associating a list of items with an entity which are used by the

linker to create the items required at runtime. For an entityx , the declarationx needs ilist is
equivalent to writingx needs y for each itemy in ilist. For itemsx ; y with resolventq ; r respectively,
the declarationx needs y means that in any execution with run setR (x5.1), q 2 R) r 2 R .
For a boxb and itemy with resolventsq ; r respectivley, the declarationb needs y means that in any
execution with run setR , if R contains an item whose type resolves toq , then r 2 R .

12

Restriction (Static) Thesimple identifierin the rule forneedsresolves to an entity declared in the current
module. Every item initem name listresolves to an item name.

We define the relationneeds between items as the smallest relation on qualified identifiers satisfying the
following conditions. For allM ; c; p; q ; r ; x ,� if M contains [c needs x] and x resolves toq , then M :c needs q� if p is an item of boxq and q needs r , then p needs r� if there is someq such thatp needs q and q needs r , then p needs r
5.1 Run Set

Let Q denote the set of simple identifiers visible in the main module that resolve to item names. Therun setR for a Seuss program is the smallest superset ofQ that is closed under theneeds relation.
Executing a program with run setR proceeds by first executing the initialisation sections (x2.2) of the

items in R subject to the following restriction: for any modulesM ;K such thatK @ M (x3.0), the items
in K are initialised before the items inM .

Thereafter, execution consists of repeatedly choosing an arbitrary action from an item inR and executing
it, subject to the constraint that every action be executed infinitely often.

Example

module M
{ item sem { ... } ;

item lw9 { .. accesses sem .. }

box Fifo { ... }
box Printer (chan : Fifo) { .. accesses chan, sem .. }

lw9 needs sem ;
Printer needs sem ;

export lw9 ;
export Printer (Library.Fifo) ;

}

module main
{ item ch : M.Fifo ;

item pr : M.Printer (ch) ;
}

Now executions of this program will include the itemsmain.ch, main.pr andM.sem but not the item
M.lw9 .

13

6 Pragmas and Commentsh pragmai ::= pragma ‘f’ h pragma stringi ‘g’

Pragmasare Seuss-specific constructs, which are meant to provide hints to implementations. They may
occur anywhere in a Seuss program, except within comments, strings and Java code sections. It is expected
that ignoring pragma declarations will not change the semantics of a program. The current language definition
does not require any particular pragmas to be supported.

The comments in a Seuss program are identical to Java comments; they may occur anywhere within the
program.

14

A EBNFh programi ::= f hmodule definitioni ghmodule definitioni ::= module hmodule identifieri ‘f’ hmodule bodyi ‘g’hmodule identifieri ::= h simple identifieri f ‘ .’ h simple identifieri ghmodule bodyi ::= [h local i]f h entityi j h import i j h exporti j h link i j h needsi gh local i ::= local ‘f’ h local codei ‘g’h entityi ::= h boxi j h itemih boxi ::= h simple boxi j h parameterised boxih simple boxi ::= box h simple identifieri h box bodyih parameterised boxi ::= box h identifieri ‘ (’ h box parameter listi ‘)’ h box bodyih box parameter listi ::= h box parameteri f ‘ ,’ h box parameteri gh box parameteri ::= h identifieri ‘ :’ h simple box nameih itemi ::= h simple itemi j h parameterised itemih simple itemi ::= item h identifier listi h simple item typeih identifier listi ::= h simple identifieri f ‘ ,’ h simple identifieri gh simple item typei ::= (‘ :’ h simple box namei ‘ ;’) j h box bodyih simple box namei ::= h general identifierih general identifieri ::= h simple identifieri j h qualified identifierih qualified identifieri ::= hmodule identifieri ‘ .’ h simple identifierih parameterised itemi ::= item h identifier listi ‘ :’ h parameterised typei ‘ ;’h parameterised typei ::= h general identifieri ‘ (’ h item parameter listi ‘)’h item parameter listi ::= h item parameteri [‘ ,’ h item parameteri]h item parameteri ::= h general identifierih box bodyi ::= ‘f’ h local declarationsi h proceduresi ‘g’h local declarationsi ::= [h box localsi] [h initialisationsi]h box localsi ::= local ‘f’ h local codei ‘g’h initialisationsi ::= init ‘f’ h initialisation codei ‘g’h proceduresi ::= f hmethodi j h actioni ghmethodi ::= h total methodi j h partial methodih total methodi ::= total method h total method headi h total commandih total method headi ::= h type specifieri h procedure headih type specifieri ::= h general identifierih procedure headi ::= h simple identifieri ‘ (’ [h formal parametersi] ‘)’h formal parametersi ::= h argument declarationi f ‘ ,’ h argument declarationi gh argument declarationi ::= h type specifieri h simple identifierih total commandi ::= ‘f’ h body codei ‘g’h partial methodi ::= partial method h procedure headi h partial commandih partial commandi ::= ‘f’ [h local i] h alternative listi ‘g’

15

h alternative listi ::= (h alternativei f h alternative typei h alternativei g)h alternative typei ::= ‘[+]’ j ‘[-]’h alternativei ::= (h preconditioni [‘ ;’ h preprocedurei] ‘-->’ h total commandi)j (‘ ;’ h preprocedurei ‘-->’ h total commandi)h preconditioni ::= ‘(’ h boolean codei ‘)’h preprocedurei ::= h qualified method namei ‘ (’ h parameter codei ‘)’h qualified method namei ::= h item namei ‘ .’ h simple identifierih item namei ::= h general identifierih actioni ::= h simple actioni j h quantified actionih simple actioni ::= h simple total actioni j h simple partial actionih simple total actioni ::= total action [h simple identifieri] h total commandih simple partial actioni ::= partial action [h simple identifieri] h partial commandih quantified actioni ::= forall h identifieri ‘ :’ h rangei h quantified bodyih rangei ::= h constanti ‘ ..’ h constantih quantified bodyi ::= h actioni j (‘f’ h actionsi ‘g’)h actionsi ::= h actioni f h actioni gh import i ::= hmodule importi j h entity importihmodule importi ::= import hmodule name listi ‘ ;’hmodule name listi ::= hmodule namei f ‘ ,’ hmodule namei gh entity importi ::= from hmodule namei import h identifier listi ‘ ;’h exporti ::= export h unit name listi ‘ ;’h unit name listi ::= h unit namei f ‘ ,’ h unit namei gh unit namei ::= h simple identifieri [‘ (’ h general identifier listi ‘)’]h link i ::= h inneri j h outerih inneri ::= inner h item namei hmethod name listi ‘ ;’h outeri ::= outer h item namei hmethod name listi ‘ ;’hmethod name listi ::= (‘+’ j ‘-’) ‘ f’ hmethod namei f ‘ ,’ hmethod namei g ‘g’hmethod namei ::= h identifierih needsi ::= h simple identifieri needs h item name listi ‘ ;’h item name listi ::= h item namei f ‘ ,’ h item namei gh pragmai ::= pragma ‘f’ h pragma stringi ‘g’

B Keywords

action box export forall from import init
inner item local main method module needs
outer partial pragma total

16

C Examples

EX . 0: Total methods.
The itemcounter0 below implements a counter which takes on non-negative values. The item has two
methods. Methodinc increments the counter, and methodfetch returns the current value; it also resets the
counter to 0.

item counter0
{

local { int n; }
init { n = 0; }

total method void inc() { n = n+1; }

total method int fetch()
{

int t = n;
n = 0;
return t;

}
} // item counter0

EX . 1: Partial method with a positive alternative.
The box below defines an unbounded integer Fifo buffer with a total methodput, and a partial methodget.
It uses theVector class which is available in the standard Java libraries.

module Channels
{

local { import java.util.Vector ;
class Nat { public int val ; }

}

box intFifo
{

local { Vector q ; }

init { // Create a new vector with 16 elements
// Vector should be doubled as needed (2nd argument)

q = new Vector(16, 0) ;
}

total method void put(Nat n)
{ q.addElement(n) ; }

17

partial method get(Nat n)
{ (!q.isEmpty()) --> { n = q.elementAt(0) ; q.removeElementAt(0) ;

if (2*q.size() < q.capacity())
q.trimToSize() ;

}
}

} // box intFifo

} // module Channels

EX . 2: Partial method with negative alternatives.
In the following definition of a strong binary sempahore, we define a typeTicket which has a method
new value which returns a new, non-Nil natural number on each call.

module Semaphore.Binary
{ local

{ import java.util.Vector ;

class Nat { public int val ; }

class Ticket
{ static int x = 0 ;

public Nat new_value() { Nat z = new Nat() ; z.val = x ;
++x ; return z ; }

}
}

box StrongBinarySemaphore
{

local
{ Ticket tk ;

boolean avail ;
Vector q ;

}

init { avail = true ; q = new Vector(16,0) ; }

partial method P(Nat n)
{ ((n != null) && avail && (q.elementAt(0) == n)) -->

{ n = null ;
q.removeElementAt(0) ;
avail = false ; }

[-] (n == null) --> { n = tk.new_value() ;

18

q.addElement(n) ; }
}

total method void V() { avail = true ; }

} // box StrongBinarySemaphore
} // module Semaphore.Binary

EX . 3: Using local procedures.
Consider a generalisation of the above to implement a stronggeneral semaphore. A simple solution is to do
the following: replace theboolean variableavail by a variable of type integer, initialised to 0, replace
the assignment inV by an increment operation and the assignment inP by a decrement operation. However,
this solution has the undesirable property that, even when the semaphore value is greater than 1, a process
waiting for the semaphore must wait until it is at the head of the queue. A better solution is to allow a process
to acquire the semaphore if it is among the firstk entries in the queue, wherek is the current value of the
semaphore. This solution is implemented below. The variableavail, now of typeNat, holds the value of
the semaphore. The local functionready works as follows. If the Ticket parametern is among the first
avail entries in the queue, the function returnstrue; otherwise, it returnsfalse.

module Semaphore.General
{ local

{ import java.util.Vector ;

class Nat { public int val ; }

class Ticket
{ static int x = 0 ;

public Nat new_value() { Nat z = new Nat() ; z.val = x ;
++x ; return z ; }

}
}

box StrongGeneralSemaphore
{

local
{ Vector q ; Ticket tk ;

unsigned int avail ;
const unsigned int K = 5 ; // Initial value of the semaphore

boolean ready(Nat n)
{ // Test whether n is among the first avail entries in q.

return ((q.indexOf(n) != -1) && q.indexOf(n) < avail) ;
}

19

}

init { avail = K ; tk = new Ticket() ; }

partial method P(Nat n)
{

((n != null) && ready(n) -->
{ n = null ;

q.removeElement(n) ;
--avail ; }

[-] (n == null) --> { n = tk.new_value() ;
q = q.addElement(n) ; }

}

total method void V() { ++avail ; }

} // box StrongGeneralSemaphore

EX . 4: (Preprocedures in positive alternatives.)
The iteminterleaver shown below has a single partial methodnext, which alternately returns elements
from two input channels, calledin0 andin1.

module M
{ from Channels import Fifo ;

item ch0, ch1 : Fifo ;

item interleaver
{

local { Boolean b ; }

init { b = False ; }

partial method next(Nat n)
{

(!b) ; in0.get(n) --> { b = True ; }
[+] (b) ; in1.get(n) --> { b = False ; }

}

} // item interleaver
} // M

EX . 5: (Preprocedures in negative alternatives.)
Consider this simple variation of a classic problem in resource allocation. A set of processes are sharing three

20

resources, which are to be used exclusively. Each process works as follows : for each resource that it needs,
it first attempts to acquire an associated lock (encoded as a semaphore); when all needed locks have been
acquired, it uses the resources and then releases them.

If different processes attempt to acquire the semaphores indifferent orders, they may end up in a deadly
embrace. One way to avoid this is to ensure that all processesattempt to acquire the resources in the same
order. This can be done by defining a shared box which acquiresthe semaphores on behalf of the processes;
the box is designed so that it attempts to acquire semaphoresin the same order for all each process.

In the solution below, the itemcollector has a partial methodprocure, which acquires the semaphores
on behalf of a waiting processes, and a total methodrelease, which releases the acquired semaphores. The
procurement of semaphores is in the same order for each process; thus deadlock is avoided. The variablet
passed toprocure is used to determine which semaphores the calling process still needs.

module M
{ import Semaphore.Binary ;

item sem0, sem1, sem2 : StrongBinarySemaphore ;

item collector
{

partial method procure(Natural t, boolean needs[])
{

(t.val > 2) --> { t = 0; }
[-] ((t.val == 2) && needs[2]) ; sem2.P() --> { ++t ; }
[-] ((t.val == 1) && needs[1]) ; sem1.P() --> { ++t ; }
[-] ((t.val == 0) && needs[0]) ; sem0.P() --> { ++t ; }
[-] ((t.val <= 2) && !needs[t.val]) --> { ++t ; }

}

total method release(BooleanArray needs)
{

if (needs[0]) sem0.V() ;
if (needs[1]) sem1.V() ;
if (needs[2]) sem2.V() ;

}
} // item collector

} // module M

An interesting feature of this solution is the use of preprocedures in negative alternatives. In particular,
methodprocure rejects after everyP attempt, regardless of whether the attempt returned with anacceptance
or a rejection.

EX . 6: Simple example with actions.
This example illustrates how to implement a simple arbitrary natural number generator using actions. The
itemanat has two actions, labelledinc anddec, which increment and decrement the counter respectively.

item anat
{

21

local { Nat n; }

init { n.val = 0; }

total action inc { n.val = n.val + 1 ; }

partial action dec { (n.val > 0) --> { n.val = n.val - 1 ; } }

total method Nat fetch()
{

Nat t = new Nat() ;
t.val = n.val ;
n.val = 0 ;
return t ;

}
} /* item anat */

Note that it is possible forfetch to return 0 on each call. One way to guarantee that a positive number is
always returned eventually is to remove the action labelleddec.

EX . 7: Module definitions and imports.

module Library.Channels
{

box Fifo
{ ... }

box BoundedBuffer
{ ... }

export Fifo, BoundedBuffer ;
} // module Library.Channels

module Semaphores.Weak
{

box GeneralSemaphore
{ ... }

box BinarySemaphore
{ ... }

export GeneralSemaphore, BinarySemaphore ;
} // module Semaphores.Weak

module Semaphores.Strong

22

{
box GeneralSemaphore
{ ... }

box BinarySemaphore
{ ... }

export GeneralSemaphore, BinarySemaphore ;
} // module Semaphores.Strong

module IO
{

import Libary.Channel ;

item job_queue : Fifo ;

box Printer { ... uses job_queue ... }

export Printer ;
} // module IO

module Library.Devices
{

import IO ;

item lw9 : Printer ;
} // module Library.Devices

EX . 8: Item imports.
The following box implements a program that locks a terminaleach time the total methodlock is invoked.
No more interaction is possible until the correct password is entered at the keyboard. ItemsKeyboard
andDisplay are assumed to be available in Library.Devices, as shown. Inthe itemScreenSaver, the
access constraints specify that no other item may access thekeyboard, although the display may be shared.
The variablePassword is assumed to be a constant valued string containing the password that unlocks the
terminal.

module Library.Devices
{

item Keyboard { .. body with method getword .. }
item Display { .. body with method put.. }

export Keyboard , Display ;

} // module Library.Devices

23

module SS
{

import Devices ;

inner Keyboard + { getword }
outer Keyboard - { getword }

inner Display + { put }

item ScreenSaver
{

local { boolean b; String w, pword ; }

init { b = True ; }

total method setPassword(String p) { pword = new String(p) ; }

total method lock() { b = false ; }

partial action monitor
{

(!b) ; Keyboard.getword(w) --> { b = (pword.equals(w)) ; }
[+] (b) ; Keyboard.getword(w) --> { Display.put(w) ; }

}

} // item ScreenSaver

ScreenSaver needs Keyboard, Devices ;
export ScreenSaver ;

} // module SS

24

EX . 9: A large example.
Hamming’s problem.

module Channel {
local { class Nat { public unsigned int val ; } }

box NatFifo { ... } // for elements of type Nat
box intFifo { ... } // for elements of type int

export NatFifo, intFifo ;
}

module Hamming
{

import Channel ;
item printq : intFifo ;
inner printq + {}
export printq ;

}

module stream
{

local { class Nat { public unsigned int val ; } }

import Channel ;
import Hamming.printq ;
export printq ;

inner printq + { put }
outer printq - { put }

produce needs consume, mult0, mult1, mult2, merge ;
consume needs produce, mult0, mult1, mult2, merge , printq ;

item mult0, mult1, mult2, merge : NatFifo ;

item produce
{ local

{ Nat h[3] , f ;

Nat min(Nat a,b,c)
{

Nat t ;
t.val = (a.val > b.val) ? a.val : b.val ;
t.val = (t.val > c.val) ? t.val : c.val ;
return t ;

25

}
}

init { f.val = 0 ; h[0].val = 0 ; h[1].val = 0 ;
h[2].val = 0 ; merge.put(Nat(1)) ;

}

forall i : 0..2
partial action read
{

(h[i] == 0) ; mult[i].get(h[i]) --> { ; }
}

partial action write
{

(h[0].val != 0) && (h[1].val != 0) && (h[2].val != 0) -
->

{ f = min(h[0],h[1],h[2]) ;
merge.put(f) ;
if (f.val == h[0].val) { h[0].val = 0 } ;
if (f.val == h[1].val) { h[1].val = 0 } ;
if (f.val == h[2].val) { h[2].val = 0 } ;

}
}

} // item produce

item consume
{

partial action
{

local { Nat g , h ; }

; merge.get(g) --> { printq.put(g.val) ;

h.val = 2*g.val ; mult[0].put(h) ;
h.val = 3*g.val ; mult[1].put(h) ;
h.val = 5*g.val ; mult[2].put(h) ;

}
}

} // item consume
} // module stream

Now any execution that contains the item produce will also contain the items consume, mult0, mult1, mult2,
merge and printq.

26

References

[GJS 96] Gosling, J., Joy, W., Steele G., The Java Language Specification, Addison-Wesley, 1996

[Krüger 96] Krüger, I. H., An Experiment in Compiler Design for a Concurrent, Object-Based Programming
Language, M.S.Thesis, Univ of Texas, 1996

[Misra 96] Misra, J., A Discipline of Multiprogramming, unpublished manuscript, 1996
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z

[Misra 94] Misra, J., Closure Properties, unpublished manuscript, 1994
ftp://ftp.cs.utexas.edu/pub/psp/unity/new unity/closure.ps.Z

27

