Seuss for Java
Language Reference

Rajeev Joshi

12 February 1998

Abstract

The programming mod&eussomprises of (i) a notation for writing concurrent prograiii a logic
for proving program properties and (iii) an operational aatits for assigning a meaning to program exe-
cutions. Seuss is based on the observation that concumegrams typically consist of large amounts of
sequential code, which are often written, understood, aadaned about in isolation, while concurrency
is made explicit only at the highest level, in deciding hovotohestrate the executions of these sequential
programs. Consequently, the Seuss notation, in its mostaabsorm [Misra 96], describes structuring
constructs for organising sequential programs writtenniyn programming language. This document de-
scribes the languag®euss for Javawhich is an adaptation of the original Seuss notation ferwih the
programming languagéava[GJS 96]. The document provides a syntax in extended Ballaus-form
(EBNF) and an operational semantics for the language. riténded for programmers with a knowledge of
Java; thus, althoug8euss for Javarograms contain sections of Java code, details of the Javaxs(e.g.,
the shape of expressions, class declarations, packaggsaret not described in this document, nor are the
meanings of Java statements.

The main body of this document describes the language iril @ei the appendices provide the full
syntax in EBNF and illustrate the language usage with a s&tall examples.

The language described here is based largely on the th@alrigeuss publication notation [Misra 96]
and the languag8euss for C++HKriuiger 96]. Its current form was debated and discussetémteetings
of the Seuss Group at the University of Texas at Austin, dedrby Will Adams, Lorenzo Alvisi, Rajeev
Joshi, Calvin Lin, Pete Manolios, Jay Misra, Todd Smith argriRond Tse.

1Dept. of Computer Sciences, The University of Texas at Aygtimail: joshi@cs.utexas.edu

Contents
0 Notation and Terminology
1 Programs and Modules

2 Boxes and ltems
2.0 BOXES e e
2.0.0 Parameterisedboxes e
2.1 HEMS . . e e e e
2.1.0 ParameterisedItems e
22 BoxBody e
2.3 Methods e e e
2.3.0 TotalMethods e
2.3.1 PartialMethods e
2.4 ACHONS . . . e e e

3 Imports and Exports
3.0 IMports e e e
3.1 EXPOrts e
3.2 NamMES e

w

oo ~N~NOohdNW®

O o >

Link Declarations

Program Execution

50 Needs
51 RunSet

Pragmas and Comments
EBNF
Keywords

Examples

11

12
12
13

14

15

16

17

0 Notation and Terminology

EBNF conventions The grammar is described using EBNF, whose conventions atal sgmbols are sum-
marised below.

Nonterminals are enclosed by the péiand) (e.g., (program))
Keywords are in boldface, (e.gmport)

Terminal symbols are enclosed within single quotes, (e.g>")
{E} represents 0 or more occurrences of E

[E] represents O or 1 occurrence of E

(and) are used for grouping

| denotes a choice of productions

As already stated, we are not interested in details of Javasy Thus the production rules we describe
will contain references to nonterminals which will expaedsections of Java code. We denote all such
nonterminals by suffixing them with the worebde (e.g., (initialisation code), (body code). We will
also state syntactic and semantic restrictions on the kifidsiva statements and declarations that such a
nonterminal may produce. The syntactic restrictions apeeted to be checked by the Seuss compiler.

Identifiers and Declarations We use the following terminology to describe the variouglkiof identifiers
that are needed in the following subsections.

e A simple identifielis a string which contains onljava lettersandJava digits[GJS 96], starts with a
Java letter and is not a Seuss keyword (appendix B) or Jawadkdy Variablesb, ¢ will range over
simple identifiers.

e A module identifieiis either a simple identifier or a string of the foriit.c where M is a module
identifier andc is a simple identifier, e.gL,i br ary andLi br ary. Channel s. VariablesK, L, M
will range over module identifiers.

¢ A qualified identifieris an identifier of the formM .c where M is a module identifier ana: is a
simple identifier, e.g.L.i brary. Channel s. Fi f o_.Channel . Variablesp, ¢, r will range over
qualified identifiers.

¢ A general identifieis either a simple identifier or a qualified identifier. Vatiedbz, y will range over
general identifiers.

A simple identifier can be accessed only at those points ilmgrpm where it iwisible. Visibility will be
defined in§3.2. At each point in the program where a simple identifieis visible, it can be replaced by a
unique qualified identifierd .c , which is called theesolvenbf ¢ .

A simple identifier b is said to resolve to hox nameat a program point only if its resolvent i& .6 and
module M exports a box§2, §3.1) namedb . Similarly, a simple identifierc is said to resolve to aitem
nameat a program point only if its resolvent i& .c and M exports artemnamedc .

Restrictions on programs In addition to the syntactic constraints imposed by the gnam Seuss programs
satisfy certain additional restrictions. These reswitsiare classified into three categories, based on the kinds
of errors that result from violating these restrictions:

e A static errorcan be detected and reported by the compiler, e.g., deglavimvariables with the same
name.

e A checked runtimerror can be detected and reported by the runtime systemaeagssing an array
out of bounds.

¢ An unchecked runtimerror may not be detectable by the runtime system, e.g.uéracf a function
that does not terminate. Neither the compiler nor the ruatiystem provides any guarantees in the
presence of such errors; it is the programmer’s respoitgitil ensure that they do not arise.

1 Programs and Modules

(program) = { (module definition) }
(module definition ::= module (moduleidentifiey ‘{" (module body ‘}’
(module identifiey ::= (simple identifiey { ‘.’ (simple identifiep }
(module body ::= [(local)]
{ (entity) | (import) | (export) | (link) | (needs }
(local) ::= local ‘{" (localcode) ‘}’

A program is a list of module definitions. modulehas docal section (which is optional) and any com-
bination ofentity declarations §2), import declarations §3.0), exportdeclarations §3.1), link declarations
(8§4), andneeddeclarations§5.0).

Themodule identifieappearing in the rule fanodule definitions called thenameof that module.
Restriction N (Static) Modules in a program have distinct names.

As a consequence of the restriction above, each module iogagm may be referred to unambiguously
by its associated name.

Restriction (Static) A program has a module namedi n.

Notation We write “ M contains [dec!]” to denote that the declaratiotiec/ occurs in the module named
M . Theenvironmenbf a module M in a program consists of the set of modules other than

2 Boxes and Items

2.0 Boxes
(entity) = (box) | (item)
(box) = (simplebox | (parameterised box
(simple box ::= box (simple identifie) (box body)

There are two kinds of entities that may be declared withiuabes —boxesanditems A box is like a
Java class, with variables which define its state and praesduhich are used to inspect or change this state.
Unlike Java, however, all variables of a box are private il can be referred to within the procedures in
that box only. Boxes provide a convenient way for declariogumonly used types, e.g., semaphore, channel.

Thesimple identifieappearing in the rule f@imple boxs called thenameof the box. A box declaration
may be parameterised2.0.0); however, its name consists only of the simple idientappearing after the
keywordbox in the declaration.

We say that two identifiers whose resolvent is the same boxertEmote thsametype.

2.0.0 Parameterised boxes

(parameterised box ::
(box parameter lisp ::
(box parametej ::

box (identifier) ‘(’ (box parameterlist ‘)’ (box body)
(box parametej {*‘,; (box parametej }
(identifier) ‘:’ (simple box namg

Each argument in a parameterised box declaration is of tt,edo: X wherec is a simple identi-
fier denoting the parameter name axik a simple or qualified identifier denoting a box declaredwiiit
parameters.

Restriction (Static) The names of the parameters are distinct. The resolvenegktheral identifiein the
rule for parameterised typeand the resolvent of tr@mple box naman the rule forbox parameter are both
box names.

2.1 Iltems

(item)

(simple item) ::
(identifier list) ::

(simple item type ::
(simple box namg ::
(general identifiep :
(qualified identifiery ::

(simpleitem) | (parameterised iteth
item (identifier list) (simple item typé

(simple identifiey {‘,” (simple identifiep }
(" (simple boxnamg ‘;’) | (box body)
(general identifien

(simple identifiey | (qualified identifier

(module identifiey ‘." (simple identifiel

An item is an instance of a box, thus, it is like a Java objetti¢tvis an instance of a Java class).

Convention The compiler replaces every item declaration of the fotrem x { body } by the two dec-
larationsbox Bx { body }anditem x : Bx whereBx is a name unique to this declaration which
is introduced by the compiler.

With this convention, we define thgpeof an item to be the resolvent of the box name appearing in the
item declaration.

Restriction (Static) The entities declared within a module have distinct namés simple type nami
an item declaration resolves to a box name.

This restriction, along witlRestriction N above, allows an entity: declared within moduleM to be
associated with the unique qualified identifigf.c .

Example Some examples of simple box and item declarations are gwlenb

nodule L. M

{ box Fifo{ ... }
itemchO , chl : Fifo ;
itemprintg { ... }

}

These statements declare a module namddwith a box namedri f o, two items namedhO andch1l of
type Fi f o and an item namegr i nt q of a type with a unique, compiler generated name. The qudlifie
names of the declared entities d&reM Fi fo, L. M chO, L. M chl andL. M pri ntq . Within the
moduleM the box identifierd=i f o andL. M Fi f o resolve to the same qualified identifier M Fi f o;
thus, they denote the same type.

2.1.0 Parameterised Items

(parameterised iterh ::
(parameterised typg :
(item parameter lisp ::

(item parametej

item (identifier list) (parameterised typg *;’
(general identifiey ‘(" (item parameterlisf ‘)’
(item parametej [*,” (item parametej]

(general identifien

An item of a parameterised box is declared by providing alistems, one for each parameter.

Restriction (Static) The resolvent of eadtem parameteis an item name. The list of items provided when
declaring an item of any box has the same length and sequétgees as the declaration of the item’s type.

Example The following example illustrates the syntax for declarsngarameterised box and instantiating
it.

box B (chan : Fifo , sem: Senaphore)
{ .. box body, with references to chan and sem.. }

itemc : Fifo ;
items : Semaphore ;
itemx : B(c, s) ;

2.2 Box Body

(box body) ::
(local declarationg ::

‘{” (local declarations (procedures ‘}’
[(boxlocals)] [(initialisations)]

(box locals) local ‘{" (localcode) '}
(initialisations) ::= init “{" (initialisation code) ‘}’

The body of a box consists of a local section and proceduraidgions. Thdocal declarationgdefine
the types, variables and functions that are used by the guoes declared later; they may also spebifx
initialistationswhich consist of a Java program which is executed when anigemeated at the beginning
of an execution.

Restriction (Static) The undeclared identifiers local coderefer to Java types declared within the local
declarations for the current module. The undeclared iflerdiininitialisation codeeither (i) are declared
in the local section for this box, (ii) are declared in thedbsection of the current module, or (iii)) have
resolvents that are item names.

Restriction (Checked runtime) Theinitialisation codeand the procedures in a box may raise exceptions;
it is up to the implementation to decide whether to abort tlogy@mm execution.

Restriction (Unchecked runtime) Theinitialisation codeis a terminating Java program.

Examples An example of local declarations is shown below.

box Semaphore

{
| ocal
{ class Queue { .. }
Queue q ; bool ean avail ;
bool ean ready(int t) { ... }
}
init { avail =true ; }
}

The first line within the local section defines a new Java atafied Queue which is to be used to store a
sequence of integers. The second line defines two varialdesrstance of the Queue class and a boolean
variable for denoting whether the semaphore is availalie. third line defines a locally accessible function
r eady, which has return type boolean and one value parameteragfentype. The fourth line defines the
initialisation commands for the bdBemaphor e : the variableavai | is to be initialised td r ue.

Procedures
(procedures = { (method | (action) }

A procedure may be a method or an action; these may occur ir@®r in the box body. Methods
may be invoked by procedures in other items, thus they areedaand may take parameters. Actions are
autonomously executing procedures which cannot be invbkether procedures; thus they may be unnamed
and do not take any parameters.

Notation We say that a method is declared for an item if it is declardférbox for that item.

Restriction (Static) No two named procedures in a box have the same name.

2.3 Methods

There are two kinds of methodstal methodsndpartial methodsA total method is a nonblocking program
which is expected to terminate; its syntax is very similathiat of class member functions in Java. A partial
method has a special form, which is described bejav®. 1).

The syntax for a method call is the same as the syntax for a mefubction call in Java. For instance,
ch. put (n) denotes a call with the parameteto the methogut in itemch.

Notation For a methodf in an item with resolventy that contains a call to a methag in an item with
resolventr , we write ¢.f calls r.g .

Requirement Acyclicity (Static) The transitive closure of thealls relation defined above is acyclic.

2.3.0 Total Methods

(method) ::

(total method ::

(total method headl ::
(type specifief ::=
(procedure headl ::
(formal parameter$::
(argument declaratioh ::
(total command ::

(total method | (partial method)

total method (total method heayl (total command
(type specifief (procedure headl

(general identifien

(simple identifiey ‘(" [(formal parameters] ‘)’
(argument declaratiop {‘,’ (argument declaration }
(type specifiej (simple identifiep

‘{" (bodycode ‘}’

Thetype specifiein total method headlefines the return type of the total method. As in Java, a type
specifier ofvoi d declares a pure procedure. The body can contain any Jaganstats and declarations.

Restriction (Static) All type specifiereccurring intotal method headndargument declaratioeither (i)
are built in Java types, (ii) are declared in the local codetfe box, or (iii) are declared in the local code for
the current module.

Restriction (Static) The undeclared identifiers imody codeeither (i) are declared in the local section of
the box, (ii) are declared in the local section of the curraatiule, or (ii) resolve to item names.

Restriction (Static) The body code does not contain any calls to partial methods.

Restriction (Unchecked runtime) The body is a terminating Java program.

2.3.1 Partial Methods

(partial method) ::= partial method (procedure headl (partial command
(partial command ::= ‘{’[(local)] (alternative list) ‘}'
(alternative list) ::= ((alternative) { (alternative type (alternative) })
(alternative typg ::= T+ | ‘[-1°
(alternative) ::= ((precondition) [*‘;" (preprocedurg] ‘-->' (totalcommand)
| (' (preproceduré ‘-->' (totalcommand)
(precondition) ::= ‘ (booleancodé ‘)
(preprocedure = (qualified method name ‘(" (parameter cod¢ ‘)
(qualified method nampe ::= (itemname ‘.’ (simpleidentifien
(itemname := (general identifien

A partial method is a pure procedure, with no return type meed in its header. It consists of local Java
declarations followed by a nonempty listafernatives Variables and functions declared as locals are visible
only within the alternatives. An alternative may pesitiveor negative as indicated by the prefix +] ' or
‘[-1°. The first alternative has no prefix; it is considered to besitve alternative. Thereconditionis a
Java expression; it is expected to be of boolean type préy@oceduras a call to a partial method of another
item. Either thepreconditionor the preproceduremay be absent, but not both. When the precondition is
omitted, it is assumed to be equivalent toue.

A partial methodacceptr rejectseach call made upon it. When a partial method is called, thequr-
ditions of its alternatives are evaluated (in unspecifietkgdrand the unique alternative whose precondition
is true (see restriction below) is invoked. The method atciéand only if some positive alternative accepts
the call; the method rejects the call otherwise. An altéveatf the formp - - > S, with preconditiorp and
total commands, always accepts calls made upon it; its execution consfaserutingS . An alternative
of the formp ; f --> S, with preconditionp, preproceduré and total comman®, executes by first
callingf . If the call onf is accepted, the8 is executed, and the alternative accepts, otherwise, ddh®n
f is rejected, the alternative rejects.

Restrictions The arguments and total command in a partial method satisfsame restrictions as those
described for total methods.

Restriction (Static) The undeclared identifiers ipoolean codeand parameter codere declared in the
local section of the current procedure, (ii) the local setof the current box, or (iii) the current section of
the current module. Thpreprocedurds a valid partial method name for tlitem name It has a signa-
ture [GJS 96] that matchgmrameter code

Restriction (Unchecked runtime) The preconditions of the alternatives in a partial methaddisjoint.
A precondition may cause side-effects only from states ickwlit evaluates to true and only when the
preprocedure is absent.

2.4 Actions

(action) = (simple action | (quantified action

('simple actior) :: (simple total actiory | (simple partial actior)
(simple total actior} ::= total action [(simpleidentifiey] (total command
(simple partial action) :: partial action [(simple identifiej] (partial command

As stated above, an action is a procedure that cannot beddvmkother procedures; instead, the sched-
uler guarantees that every action is executed infinitelgroiih an execution. Quantified actions define col-
lections of parameterised actions; they are describedbdlbe restrictions stated for total (partial) methods
also apply to total (partial) actions.

Restriction (Static) A partial action does not have any negative alternatives.

Quantified Actions

(quantified actior} ::= forall (identifier) ‘:" (range) (quantified body
(range) = (constanp ‘. (constand

(quantified body ::= (action) | (‘{" (actions) ‘'}")
(actions) = (action) { (action) }

A quantified action is a collection of actions parameterisgdn index variable, which may appear in the
body of the action. The range of this variable is requiredgabterminable at compilation time, hence it is
restricted to be of the forni...h where ! and h are integer constants.

When ! < h , such a quantified action declaration with index variaplis equivalent to writingh — [+ 1
action declarations, one for each valuein the rangel . .. h , with free occurrences of in quantified body
being replaced byn .

3 Imports and Exports

Import declarations allow identifiers declared in one medial be used in another without qualification.
Export declarations identify which identifiers are to be maisible outside a module; they serve the same
purpose apublicdeclarations in Java packages.

3.0 Imports

(import)
(module imporp ::
(module name list ::
(entity import) ::

(module imporh | (entity import)
import (module name list *;’
(modulenamé {*‘,; (module namé }

from (module namé import (identifier list) *;’

As in Java, an import declaration allows identifiers expibtig another module to be referred to by a
simple name consisting of a single identifier. In the abserfi@gm import declaration, an entity exported by
a module can be referenced in another module only by usingbfigd identifier. There are two kinds of
import declarations module importandentity imports A module import has the forimnpor t list where
list is a list of module identifiers; such a declaration is eq@mato writingi nport M for each M in
list . We say that the declaratiomport M implicitly imports ¢ from M for each simple identifier

¢ exported by M (§3.1). An entity import has the forthrom M i nport [list where list is a list
of simple identifier; such a declaration has the same effeetritingf rom M inport ¢ foreache
in list . We say that the declaratidmrom M inport ¢ explicitly imports ¢ from M . We write
importedto mean explicitly imported or implicitly imported.

Restriction (Static) A simple identifier may be imported from a modulé only if it has been exported
by M .

Examples An example of the use of imports is shown below. Assume thabibxFi f o is declared in
the moduleBuf f er s and thatWweak Sermmaphor e and St r ongSermaphor e are declared in the module
Senaphor es.

nodul e User
{ from Semaphores i nport WakSemaphore ;
i mport Buffers ;

itemch : Fifo ;
itemwsem: WakSemaphore ;
item ssem: Semaphores. StrongSemaphore ;

}
3.1 Exports
(export) = export (unitname list *;’
(unitname lisy = (unitname) {*‘,; (unitname) }
(unitname) = (simple identifiey [‘(' (generalidentifier lish ‘)" 1]

Export declarations allow entities declared in a modulegtantported §3.0) by other modules. An export
declaration has the forexport list where list is a list of entity names; such a declaration has the same
effect as writingexport =z for every z in list . We say that the declarati@xport =z results in the
identifier z beingexported bythe current module.

Restriction (Static) Every exported identifier resolves to an entity name. If apaaterised box is exported,
then each simple identifier occuring in the parameter lisk@icitly exported by the module.

Example As an illustration, we note that the following example viekthe restriction above:

nodul e | ncorrect
{ fromBuffers inport Fifo ;

box B (chan : Fifo) { ... }

export B (Fifo) ;
}

The example would be legal if the declaratexport Fi f o precedegxport B (Fifo), orifthe
latter were changed ®xport B (Buffers.Fifo) .

10

3.2 Names

We say that a modulél is belowa module M , denotedK C M , provided any of the following holds:
e M contains|i nport K]
e forsomez , M containsffrom K inport =z]

e forsomemoduleL , K C Land L= M
Restriction (Static) The relation_ over modules is asymmetric.

Restriction U (Static) For any module)M , the collection of simple identifiers consisting of
¢ the identifiers declared i/
¢ the identifiers explicitly imported from other modules
¢ the identifiers implicitly imported from other modules

does not contain any duplicates.

The collection described above therefore correspondssetaf identifiers; we refer to it as the set of
visibleidentifiers of M .

Resolution UsingRestriction U, a simple identifierc that is visible in M corresponds to a unique quali-
fied identifier K.c , as follows. If ¢ is declared inM then K is M ;otherwise,c is imported andK is
the module from which it is imported. We say thét.c is theresolventf ¢ and thatc resolves toK.c .

Notation A qualified identifier resolves to itself.

4 Link Declarations

(linky == (inner) | (outer)
(inner) = inner (itemname (method name list *;’
(outer) = outer (itemnamée (method name list ‘;’
(method name list ::= (‘+ | *-"){ (methodnamé& {‘; (methodnamg }'}
(method namg ::= (identifier)

Link declarations are used to state assumptions about thieoement and to assert guarantees for it.
There are two kinds of link declaratiorianer declarations anduterdeclarations.

11

Notation Let S denote the set of methods of an item. For any suliesf S , we write T to mean the
setS\ T .

A declaration of the forminner x + { T } asserts that items declared in the current module may
invoke only those methods af that are present inl’ . A declaration of the formnner x - { T }
asserts that items declared in the current module may invokethose methods of that are present il .

A declaration of the fornout er x + { T } states thatitems in the environme#it) of the current
module may invoke only those methodsxothat are presentirf’ . A declaration of the fornout er x -

{ T 7} states thatitems in the environment of the current moduleimeke only those methods afthat
are presentinT .

Restriction (Static) A module contains at most one outer and one inner declarfdioany item. Each
identifier inmethod name ligs the name of a method declared in that item.

Notation Let ¢ denote the resolvent of identifier in module M . Then,
e If M containsfinner z + T],wewrite (¢,T) € M.inner

e If M containsfinner z - T],wewrite (¢q,T) € M.inner

We use a similar convention for outer declarations.

Restriction (Static) If (¢, T) € M.inner , an item declared within modul@/ can invoke only those
methods ong thatareinT .

Restriction (Static) The inner and outer declarations in a program satisfy tHevihg property, which is
called theLink ConstrainfMisra 94].

~VM,K,q,S, T :: (M #K A (q,5) € M.inner A (q,T) € K.outer) = SCT)

5 Program Execution

In this section, we explain the syntax foeedsdeclarations and discuss how they are used to define the
executions of a Seuss program.

5.0 Needs
(needs = (simple identifiep needs (item name lis} *;’
(item name lisp = (temname { ‘) (itemname }

needs declarations provide a way for associating a list of itemthwain entity which are used by the
linker to create the items required at runtime. For an eniity, the declarationz needs ilist is
equivalentto writingz needs y foreachitemy inilist. Foritemsz, y with resolventq, r respectively,
the declarationz needs gy means that in any execution with run sBt(§5.1), g ¢ R = r € R .
For a boxb anditemy with resolventsg, r respectivley, the declaratioh needs y means thatin any
execution with run set® , if R contains an item whose type resolvesgq thenr € R .

12

Restriction (Static) Thesimple identifiein the rule forneedsesolves to an entity declared in the current
module. Every item ifitem name listesolves to an item name.

We define the relatiomeeds between items as the smallest relation on qualified idergtifiatisfying the
following conditions. For allM, ¢, p, g, r, z ,

e if M contains[c needs z] and z resolvestoq , then M.c needs q
e if p isanitem of boxg and ¢ needs r ,then p needs r

o if there is someq such thatp needs ¢ and g needs r ,then p needs r

5.1 Run Set

Let @ denote the set of simple identifiers visible in the main medhéat resolve to item names. Thm set
R for a Seuss program is the smallest supersef)othat is closed under theeeds relation.

Executing a program with run se® proceeds by first executing the initialisation sectio§sZ) of the
items in R subject to the following restriction: for any modulég, K such thatK = M (§3.0), the items
in K are initialised before the items it/ .

Thereafter, execution consists of repeatedly choosingldtrary action from an item inR and executing
it, subject to the constraint that every action be executéuiiely often.

Example
nmodul e M
{ itemsem{ ... } ;
itemIwd { .. accesses sem.. }
box Fifo { ... }
box Printer (chan : Fifo) { .. accesses chan, sem.. }
I w9 needs sem ;
Printer needs sem;
export w9 ;
export Printer (Library.Fifo) ;
}

nodul e mai n
{ itemch : MFifo ;

itempr : MPrinter (ch) ;
}

Now executions of this program will include the itemmai n. ch, mai n. pr andM sembut not the item
M1 wo .

13

6 Pragmas and Comments
(pragmay = pragma ‘{ (pragmastring ‘}’

Pragmasare Seuss-specific constructs, which are meant to provide to implementations. They may
occur anywhere in a Seuss program, except within commerntsggsand Java code sections. It is expected
that ignoring pragma declarations will not change the seiteaf a program. The current language definition
does not require any particular pragmas to be supported.

The comments in a Seuss program are identical to Java corsntieey may occur anywhere within the
program.

14

A EBNF

(program) =

(' module definitiony ::=
(module identifiep ::
(module body ::=

(local) =

(entity) =

(box) ::

(simple box ::=

(parameterised box :
(box parameter lis} ::
(box paramete} ::=
(item)

(simple item) =
(identifier list) ::=

(simple item typé ::

(simple box namg ::=
(general identifiep ::
(qualified identifiery ::
(parameterised iterh ::=
(parameterised typg :
(item parameter lis} ::=
(item parametej =
(box body) ::

(local declarationg ::=
(box locals) ::
(initialisations) ::
(procedures =
(method) ::

(total method ::=

(total method headl ::=
(type specifief ::
(procedure headl ::=
(formal parameter$::
(argument declaratioh ::
(total command ::=

(partial method) ::

(partial command ::=

{ (module definition) }

module (module identifiel
(simple identifiey { ‘.

[(local)]

{ (entity) |
local *{

(box) |
(simple box
box
box

(identifier)
(simple item)

(simple identifiey {*,
(‘v (simple box namg ;') |

(import) |
(local code) ‘}
(item)

(export) |

| (parameterised box

(simple identifiep
(identifier)
(box parametef {*/

(box body)

‘(" (box parameter lis} ‘)’

(box paramete} }

(simple box namg
| (parameterised iterh
item (identifier list)

general identified
simple identifiep
module identifie)

general identifiep
item paramete} [
general identifiep

‘{” (local declarations

(
(
(
item (identifier list)
(
(
(

('simple item typé
(simple identifiep }

| (qualified identifier)
‘. (simple identifiel

‘(" (item parameter lis}

‘) (item parametej]

(procedures '}

[(boxlocals)] [(initialisations)]

local ‘{
init
{ (method
(total method
total method
(type specifie}

argument declaratiopn {‘/

(type specifie}

partial method

{'[(local)]

(local code) ‘}’
‘{’ (initialisation code) ‘}'

(action) }

(total method head

(partial method)

(procedure headl
(general identifien
(simple identifiep
(

(simple identifiep
‘{" (bodycode ‘}’

(procedure head

(alternative listy ‘}’

15

(box body)

‘{" (module body ‘}’
(simple identifiey }

(link) | (needs }

(box body)

(parameterised typp ;'

y

(total command

‘(" [(formalparameters] ‘)
(argument declaratiof }

(partial command

(alternative list) ::
(alternative type ::
(alternative) ::

(precondition) ::

(preprocedure ::=

(qualified method name ::
(item name ::

(action) ::=

('simple actior) ::

(simple total actior} ::=
(simple partial actiorn) ::=

(quantified actior} ::

(range) =

(quantified body ::
(actions) ::

(import) =

(module imporb ::
(module name list ::

(‘entity import) =

(export)

(unitname lisy =

(unitname) ::
(link'y

(inner) =

(outer) ::
(method name list ::

(method namée ::=

(needs
(item name lisy =
(pragmay ::
B Keywords
action box
i nner item
out er parti al

((alternative)
T+ 1 -
((precondition) [}
(;" (preprocedure
‘ (boolean codé
(qualified method na
(itemname ‘.

(general identifien
(simple action} |
(simple total actior)
total action [(simp

partial action

(preprocedurg] ‘-->’
(total command)

AN
y
me *(

(parameter code
(simple identifiep

{ (alternative typeé (alternative) })

'y

(quantified action

| (simple partial action

le identifiep]

[(simple identifien]

forall (identifier) (range) (
(constant (constant)

(action) | (‘{" (actions)y ‘})
(action) { (action) }

(module import |

(entity import)

import (module name list *;’
(modulenamé {*‘,;” (module namé }

from (module namé

import

export (unitname list *;’

(unit name)

£ o

unitname) }

(total command

(partial command
quantified body

(identifier list) *;’

(simple identifiey [‘(' (general identifier lish ‘)"]

(inner) | (outer)
inner (item name
outer (item name
(4|
(identifier)

(method name list ‘;’
(method name list ‘;’

) { (methodname {‘/

(method namé }‘}

(simple identifiep needs (item name lis} *;’

(itemname { ‘/

(itemname }

pragma ‘{ (pragmastring ‘}’

export forall from
| ocal mai n
pragma total

16

i mport

nmet hod nodul e

init
needs

(total command

C Examples

Ex. 0: Total methods.
The itemcount er O below implements a counter which takes on non-negativeegalThe item has two

methods. Methodhc increments the counter, and methfetch returns the current value; it also resets the
counter to 0.

item counterO

{
local { int n; }
init { n=0;}
total nethod void inc() { n = n+l1; }

total nethod int fetch()

{ .
int t =n;
n = 0;
return t;
}

} // itemcounterO

Ex. 1. Partial method with a positive alternative.
The box below defines an unbounded integer Fifo buffer withtal tethodut , and a partial methoget .
It uses the/ect or class which is available in the standard Java libraries.

nodul e Channel s

{

I ocal { inmport java.util.Vector ;
class Nat { public int val ; }

}

box intFifo

{
local { Vector q ; }

init { // Create a new vector with 16 el enents
/1 Vector should be doubl ed as needed (2nd argunent)

g = new Vector (16, 0) ;
}

total nethod void put(Nat n)
{ g. addEl enent (n) ; }

17

partial nethod get(Nat n)
{ ('qg.isEmpty()) -->{ n = qg.elementAt(0) ; q.renoveEl enentAt(0) ;N
if (2*q.size() < g.capacity())
g.trinfroSi ze() ;

}
} /] box intFifo
} // rnodul e Channel s
Ex. 2. Partial method with negative alternatives.

In the following definition of a strong binary sempahore, vwefige a typeTi cket which has a method
new.val ue which returns a new, nohk | natural number on each call.

nodul e Semaphor e. Bi nary
{ | ocal
{ i mport java.util. Vector

class Nat { public int val ; }

cl ass Ticket
{ static int x =0 ;

public Nat new value() { Nat z = new Nat() ; z.val = x ;
++x ; return z ; }

}
}
box St rongBi narySenmaphore
{
| ocal
{ Ticket tk ;
bool ean avai l
Vector q ;
}
init { avail =true ; g = new Vector(16,0) ; }

partial nethod P(Nat n)

{ ((n!=null) & avail && (g.elenmentAt(0) ==n)) -->
{ n=null ;
g. renoveEl enent At (0)
avail = false ; }
[-1T (n=mnull) --> { n = tk.new value() ;

18

g. addEl enent (n) ; }
}

total nethod void V() { avail =true ; }

} // box StrongBi narySenmaphore
} // nodul e Semaphore. Bi nary

EXx. 3: Using local procedures.

Consider a generalisation of the above to implement a sigengral semaphore. A simple solution is to do
the following: replace thdool ean variableavai | by a variable of type integer, initialised to 0, replace
the assignment i by an increment operation and the assignmeiftly a decrement operation. However,
this solution has the undesirable property that, even whersémaphore value is greater than 1, a process
waiting for the semaphore must wait until it is at the heacefqueue. A better solution is to allow a process
to acquire the semaphore if it is among the fiksentries in the queue, wherk is the current value of the
semaphore. This solution is implemented below. The vagiabhi | , now of typeNat , holds the value of
the semaphore. The local functioeady works as follows. If the Ticket parametaris among the first
avai | entries in the queue, the function retutrrsue; otherwise, it returngal se.

nodul e Semaphor e. Gener al
{ | ocal
{ i mport java.util.Vector ;

class Nat { public int val ; }

cl ass Ticket
{ static int x = 0 ;

public Nat new value() { Nat z = new Nat() ; z.val = x ;

++x ; return z ; }
}
}
box StrongGeneral Sermmaphore
{
| ocal
{ Vector q ; Ticket tk ;
unsi gned int avail ;
const unsigned int K=5; // Initial value of the semaphorell
bool ean ready(Nat n)
{ /1 Test whether n is anobng the first avail entries in q.1
return ((g.indexOf(n) !'=-1) && g.indexOf(n) < avail) ;N1

19

}

init { avail = K; tk = new Ticket() ; }
partial nethod P(Nat n)
{
((n!'=null) && ready(n) -->
{ n=nul ;
g. renoveEl ement (n) ;
--avail ; }
[-1 (n ==null) -->{ n = tk.new value() ;
g = q.addEl enent (n) ; }
}
total method void V() { ++avail ; }

} /'/ box StrongGeneral Semaphore

EXx. 4: (Preprocedures in positive alternatives.)
The itemi nt er | eaver shown below has a single partial methoekt , which alternately returns elements
from two input channels, calledn0 andi n1.

nodul e M
{ from Channel s inport Fifo ;

itemchO, chl : Fifo ;

iteminterl eaver

{

local { Boolean b ; }
init { b = False ; }

partial nethod next(Nat n)
{
('b) ; in0.get(n) --> { b
[+] (b) ; inl.get(n) --> { b

True ; }
Fal se ; }

} // iteminterleaver
Y IIM

EXx. 5: (Preprocedures in negative alternatives.)
Consider this simple variation of a classic problem in reseallocation. A set of processes are sharing three

20

resources, which are to be used exclusively. Each process\as follows : for each resource that it needs,
it first attempts to acquire an associated lock (encoded asnaghore); when all needed locks have been
acquired, it uses the resources and then releases them.

If different processes attempt to acquire the semaphoraiéf@rent orders, they may end up in a deadly
embrace. One way to avoid this is to ensure that all procedt=spt to acquire the resources in the same
order. This can be done by defining a shared box which acathieesemaphores on behalf of the processes;
the box is designed so that it attempts to acquire semaphmttes same order for all each process.

Inthe solution below, the itemol | ect or has a partial methgar ocur e, which acquires the semaphdjes
on behalf of a waiting processes, and a total metheldease, which releases the acquired semaphores. The
procurement of semaphores is in the same order for eachgmateis deadlock is avoided. The variable
passed ter ocur e is used to determine which semaphores the calling procdssestds.

nmodul e M
{ i mport Senaphore.Binary ;

item senD, senil, sen? : StrongBi narySemaphore ;

itemcoll ector

{
partial nethod procure(Natural t, bool ean needs[])
{
(t.val >2) --> {t =0; }

[-] ((t.val == 2) && needs[2]) ; senR.P() --> { ++t ;11
[-] ((t.val == 1) && needs[1]) ; senl.P() -->{ ++t ; }1
[-] ((t.val == 0) && needs[0]) ; senD.P() -->{ ++t ; }1
[-] ((t.val <= 2) && !'needs[t.val]) -->{ ++t ;11

}

total nethod rel ease(Bool eanArray needs)
{

if (needs[0]) senD.V() ;

if (needs[1]) seml.V() ;

if (needs[2]) senR.V() ;

} // itemcollector
} // nmodule M

An interesting feature of this solution is the use of prepthges in negative alternatives. In particular,
methodor ocur e rejects after everl attempt, regardless of whether the attempt returned wititeaptance
or a rejection.

EX. 6: Simple example with actions.
This example illustrates how to implement a simple arbjtr@tural number generator using actions. The
itemanat has two actions, labellddhc anddec, which increment and decrement the counter respectively.

i tem anat

{

21

local { Nat n; }

init { n.val = 0; }

total action inc { n.val =n.val + 1 ; }

partial action dec { (n.val >0) -->{ n.val =n.val - 1; } }I

total nethod Nat fetch()

{
Nat t = new Nat () ;
t.val = n.val ;
n.val = 0 ;
return t ;

}

} /* itemanat */

Note that it is possible fof et ch to return 0 on each call. One way to guarantee that a positiveber is
always returned eventually is to remove the action labelkecl.

EX. 7: Module definitions and imports.

nmodul e Li brary. Channel s

{
box Fifo

{ ...

box BoundedBuf f er
{ ...}

export Fifo, BoundedBuffer ;
} // nodul e Library. Channel s

nodul e Senmaphor es. Weak

{

box General Senaphore

{ ...

box Bi nar ySemaphore

{ ...

export GCeneral Semaphore, Bi narySemaphore ;
} // nodul e Semaphor es. Weak

nodul e Senaphores. Strong

22

box CGener al Senaphore

{ ...

box Bi nar ySemaphore

{ ...

export GCeneral Semaphore, Bi narySemaphore ;
} // nodul e Semaphores. Strong

nodule 1O
i mport Libary. Channel ;
itemjob_queue : Fifo ;
box Printer { ... uses job_queue ... }

export Printer ;
} // module 10

nmodul e Li brary. Devi ces
i mport 10 ;

itemIwd : Printer ;
} // nodul e Library. Devi ces

Ex. 8: Itemimports.

The following box implements a program that locks a termewsath time the total methddbck is invoked.

No more interaction is possible until the correct passwerdritered at the keyboard. Iterdsyboar d
andDi spl ay are assumed to be available in Library.Devices, as showthditemScr eenSaver , the
access constraints specify that no other item may acceseyeard, although the display may be shared.
The variablePasswor d is assumed to be a constant valued string containing thevpegshat unlocks the
terminal.

nmodul e Li brary. Devi ces

{
item Keyboard { .. body with nethod getword .. }

itemDisplay { .. body with nmethod put.. }
export Keyboard , Display ;

} // nodul e Library. Devi ces

23

nodul e SS
{
i mport Devices ;

i nner Keyboard + { getword }
out er Keyboard - { getword }

i nner Display + { put }
item ScreenSaver
{ | ocal { boolean b; String w, pword ; }
init { b = True ; }
total nethod setPassword(String p) { pword = new String(p) ; N
total nethod lock() { b = false ; }
partial action nonitor
{ ('b) ; Keyboard.getword(w) -->{ b = (pword. equals(w)) ; }1i
[+] (b) ; Keyboard.getword(w) -->{ Display.put(w ; }NI

} // item ScreenSaver

ScreenSaver needs Keyboard, Devices ;
export ScreenSaver

} // nodul e SS

24

Ex. 9. Alarge example.
Hamming'’s problem.

nodul e Channel {

local { class Nat { public unsigned int val ; } }
box NatFifo { ... } // for elements of type Nat
box intFifo{ ... } [/ for elements of type int

export NatFifo, intFifo ;

}

nmodul e Hanmi ng

{
i mport Channel ;
itemprintq : intFifo ;
i nner printqg + {}
export printq ;

}

nmodul e stream

{
local { class Nat { public unsigned int val ; } }
i mport Channel ;

i mport Hammi ng.printq ;
export printq ;

inner printqg + { put }
outer printg - { put }

produce needs consune, multO, nultl, mult2, nerge ;
consume needs produce, multO, multl, nmult2, merge , printq

itemnmult0O, nmultl, nult2, nerge : NatFifo ;

i tem produce

{ | oca
{ Nat h[3] , f ;

Nat min(Nat a,b,c)

{
Nat t ;
t.val = (a.val > b.val) ? a.val : b.val
t.val = (t.val > c.val) ? t.val : c.val ;
return t ;

25

}

init { f.val =0 ; h[0].val =0 ; h[1].val =0 ;
h[2].val = 0 ; merge. put(Nat (1))

}
forall i : 0..2
partial action read
: (h{i] ==0) ; mult[i].get(h[i]) -->{; }
partial action wite
{ (h[O0].val !'=0) &k (h[1].val !=0) && (h[2].val !=0) -H

{ f =mn(h[O],h[1],h[2]) ;
mer ge. put (f)

if (f.val == h[0].val) { h[O].val =0}
if (f.val == h[1].val) { h[1].val =0 } ;
if (f.val == h[2].val) { h[2].val =0} ;

}

} // item produce

i tem consune

{
partial action
{
local { Nat g, h; }
; nmerge.get(g) -->{ printqg.put(g.val) ;
h.val = 2*g.val ; mult[O].put(h) ;N
h.val = 3*g.val ; mult[1].put(h) ;N
h.val = 5*g.val ; mult[2].put(h) ;N
}
}

} // item consune
} // nodul e stream

Now any execution that contains the item produce will alsotaim the items consume, multO, multl, mult2,
merge and printg.

26

References

[GJS 96] Gosling, J., Joy, W., Steele G., The Java Languageifgmtion, Addison-Wesley, 1996

[Kriiger 96] Kriger, I. H., An Experimentin Compiler Desifpr a Concurrent, Object-Based Programming
Language, M.S.Thesis, Univ of Texas, 1996

[Misra 96] Misra, J., A Discipline of Multiprogramming, unplished manuscript, 1996
ftp://ftp.cs.utexas. edu/ pub/ psp/ seuss/ di scipline.ps.Z

[Misra 94] Misra, J., Closure Properties, unpublished nsaript, 1994
ftp://ftp.cs.utexas. edu/ pub/ psp/ unity/newunity/closure.ps.Z

27

