On The Impossibility Of Robust Solutions For
Fair Resource Allocation

Rajeev Joshi , Jayadev Misra

Department of Computer Sciences, The University of Texas at Austin

Abstract

We show that the presence of even a single faulty process makes it
impossible to design a strategy for fair allocation of a shared resource.

Key words: Concurrency; Distributed Computing; Fault tolerance

0 Introduction

A classic problem in distributed systems is the following resource allocation
problem: given a set of processes sharing a resource, design a synchronisation
mechanism that guarantees (i) mutual exclusion, i.e., at any moment, at most
one process uses the resource, and (ii) deadlock-freedom, i.e., if some process
is waiting for the resource, then eventually some process uses the resource. A
simple centralised solution to this problem is the following: a boolean variable
b is used to denote whether the resource is available; b is initially set to true.
An attempt by a process to acquire the resource is successful only if b is true;
as a result, b is set to false. The attempt is unsuccessful if b is false. When a
process releases the resource after use, b is set to true.

A variant of this problem is the fair resource allocation problem, in which re-
quirement (ii) above is replaced by the stronger condition of starvation-freedom,
i.e., given that no process uses the resource forever, no process is denied forever.
Although the above implementation is not starvation-free, it can be modified
to meet this requirement by introducing a new variable g , of type Sequence of
Process Identifier ; q is initially set to the empty sequence. An attempt by a
process to acquire the resource is successful only if b is true and the identifier
for the process is at the head of ¢ ; as a result, the identifier is removed from ¢ ,
and b is set to false. The attempt is unsuccessful otherwise, and the process
identifier is appended to g if it is not already in ¢ . As before, when a process
releases the resource after use, b is set to true.

A drawback of this implementation is that it works correctly only when all

processes are persistent, i.e., each process waiting to use the resource makes
repeated attempts to acquire it until successful. In the presence of even a single
transient process, i.e., a process not guaranteed to follow each unsuccessful
attempt with another request, the above design provides not even the guarantee
of deadlock-freedom, because the presence of an identifier for a transient process
at the head of ¢ can block the progress of other processes.

In this paper, we show that this difficulty is not just an artefact of the
simplicity of this particular implementation — that, in fact, there is no solution
to the problem of fair resource allocation in an asynchronous system in which
some processes might be transient.

Our notion of transient processes corresponds to a class of process failures
in asynchronous systems for which no finite experiment can distinguish between
failure and slow execution. Note, however, that transient processes may fail
only when they are not using the resource; in particular, we do not consider
situations in which processes may fail while using the resource, nor situations
in which the resource manager may fail: for systems with such catastrophic
failures, it is easy to show that there is no implementation that provides any
progress guarantees. We have made stronger assumptions about the behaviour
of processes in order to obtain a nontrivial impossibility result.

Moreover, we have considered only those situations in which unsuccessful
processes make repeated attempts to acquire the resource. In some implemen-
tations, an unsuccessful attempt causes a process to block, and wait for a signal
from the resource manager. For such systems, the analogue of a transient pro-
cess is one that may fail while it is blocked. Assuming, as before, that such
failures are indistinguishable from slow response by finite experiments, our re-
sult applies in these situations too.

1 Preliminaries

Consider a system of N processes, numbered 0 through N — 1 (with N > 1),
that share a resource. We represent a history of operations on the resource by
a string of symbols that are of the form S; , U; or R; ,for 0 < j < N . Each
symbol denotes an operation on the resource: S; denotes a successful attempt
by process j to acquire the resource, U; denotes an unsuccessful attempt if
process j is not holding the resource, and a no-op otherwise, and R; denotes
a release if process j is holding the resource, and a no-op otherwise. (We use
this convention of no-ops because it places fewer constraints on occurrences of
symbols of the form U; and R; ; this leads to a simpler presentation.)

An implementation is given by a nonempty set of such strings, which corre-
spond to the execution histories that the implementation admits. Not all such
nonempty sets are implementations, however — implementations are required to
satisfy certain additional properties, which are described in section 2.

Notational Remark. Throughout this paper, the identifiers e, f range over sym-
bols, z,y range over finite strings, r ranges over finite and infinite strings, and
1,7 range over processes,ie., 0 <t < Nand0<j <N .

For any z,r , we write & C r (read “z under r”) to mean that z is a finite
prefix of r . The empty string is denoted by ¢ ; it satisfies, for any string r ,
(¢ C r) . For any e,z , the expression ¢ < e (read “z snoc e”) denotes the string
consisting of x followed by e . The operator < is left associative, i.e., x <e < f
means (z <€) < f.

Operators have the following precedences:

{'}v{47_'}»{Ev€v¢v:}v{/\vv}v{:>7£}

where symbols within a set have the same binding power, and greater binding
power than symbols in sets to the right. The infix operator ‘.” denotes function
application.

(End of Notational Remark.)

2 Implementations

Due to the fact that implementations provide certain guarantees, e.g., mutual
exclusion, a set of strings constitutes an implementation only if it satisfies certain
properties. We express these properties in terms of two relations, defined, for
all j,z as: (recall that & ranges over finite strings only)

(Loose) (j loose in) = (every S; in « is followed eventually by an R;)

(Free) (z free) = (Vj::jloose in z)

Informally speaking, (j loose in x) states that process j does not hold the re-
source after execution z , whereas (z free) states that the resource is available
after execution z .

An implementation M is a nonempty set of strings, called the runs of M |
that satisfies the five conditions (C0)—(C4) given below. (In (C0)—(C2), vari-
ables j,z and r are quantified universally over the appropriate domains.)

(Co) (xaS; €M) = (z free)

Informally speaking, (C0) expresses mutual exclusion, i.e., a process is success-
ful only if the resource is available. A consequence of this condition is that
strings of the form = < S; @ .S; are not runs of any implementation.

(C1) zeM AN (jloose in x)
(C2) zxzeM A —(j loose in x)

(IdeEM) V (szjEM)

=
= (z a9 R; €M)

Do

These conditions state that processes behave asynchronously: (C1) states that,
at any point, a process not holding the resource might attempt to acquire it, and
the implementation should be prepared to respond to the attempt by allowing
it to be successful or unsuccessful. (C2) states that, at any point, a process
holding the resource might release it. Note that these conditions are quite
general; for instance, they admit a nondeterministic implementation in which,
for some ¢, 7, , the strings ¢ <« S; , * <« S; and ¢ < Uj are all runs of the
implementation.

(C3) (M is prefiz-closed)

Condition (C3) states that every prefix of a run is also a run; from this, and
the fact that implementations are nonempty, it follows that € is a run of every
implementation.

(C4) Letr be any string such that
(all finite prefives of r arein M) A
Vjzux<U; Cr = z<8;¢M)
Then, r € M .

Condition (C4) holds trivially for finite r ; for infinite r , it asserts the following
closure condition on M : if all finite prefixes of 7 are in M , and if unsuccessful
attempts occur in r only at points at which successful attempts cannot occur,
then r isin M .

Remark on (C4). Condition (C4) needs some explanation. In particular, we
note that it is weaker than the requirement that M be continuous (which would
state that any run, all of whose finite prefixes are in M , also be in M) . The
reason we do not require continuity is that it disallows certain solutions with
unbounded nondeterminism. For instance, consider a solution that initially
selects an arbitrary natural number &k , then rejects the first k& attempts to
acquire the resource, and then behaves like the starvation-free solution described
in the introduction. This solution is not continuous, because an infinite string
consisting only of unsuccessful attempts is not an execution history, although
all its prefixes are; however, the solution satisfies conditions (C0)—(C4), so it
is an implementation by the above definition.

(End of Remark.)

3 Fair Implementations

For any string r , we write (r is fair) to mean that, for all j ,

(Fair) (r has infinitely many U;) = (r has infinitely many S;)

Note that, by this definition, all finite strings are fair.

An implementation M is said to be fair provided that all runs in M are fair.
Informally speaking, fair implementations provide the guarantee of starvation-
freedom to persistent processes. (Recall from the introduction that such imple-
mentations solve the fair resource allocation problem.)

4 Nonexistence of Fair Implementations

We show that every implementation has an unfair run. The proof consists of
showing how to construct such a run for a given implementation, by exploiting
the fact that some process may be transient. As discussed in the introduction,
this establishes the nonexistence of a robust implementation for the problem of
fair resource allocation.

The main idea in the proof is to have two processes, A and B, collude in
the following way: process A makes repeated attempts to acquire the resource
until it is successful. If it acquires the resource, B makes an attempt, which is
unsuccessful, because the implementation guarantees mutual exclusion. Next,
A releases the resource, and the processes repeat this behaviour. There are two
cases to consider: (i) A is always eventually successful, and (ii) after a certain
point, A is always unsuccessful. In case (i), B starves for the resource; in case
(ii), A starves — in both cases, the resulting run is unfair. (Note that, in case
(ii), process B behaves in a transient manner, because it may not follow an
unsuccessful attempt with another request.)

This informal argument is formalised in the following theorem.

Theorem. Every implementation has an unfair run.

Proof. Given an implementation M ;| we design an algorithm to construct
an infinite sequence Y of finite strings such that the limit of Y is an unfair
run of M . The algorithm consists of a nonterminating loop that maintains an
invariant L , defined as:

L: (Y.hfree) N YheM) N Vjzuax<U; CYh = a8 ¢M)

where h is a program variable. Informally speaking, this invariant states that
every string in the sequence constructed by the algorithm represents an execu-
tion history of M in which processes are unsuccessful only at points where they
cannot be successful; we shall use this property in showing that the limit is an
unfair run of M .

The complete algorithm is shown below. Note that the disjunction of the
guards is true; thus, the loop is nonterminating, and the algorithm eventually
assigns, for each k, a value to Y.k .

The two alternatives of the loop mirror the informal argument presented
above. In the first alternative, the run being constructed is extended as follows:

|[var h : Natural
; h, Y0:=0,¢ {L}
; do
YhaS eM — {L N (Y.h<1S1€M)}
h,Y(h+1) = h+1,()/.h<1S1<1U0<1R1) {L}
D YhaS1¢M — {L N (Yh <S¢ M)}
h,Y(h+1) := h+1, (Y.h <« Uy) {L}
od
Il

first, process 1 acquires the resource, then process 0 makes an attempt, which
is unsuccessful (on account of (C0)), and then, process 1 releases the resource.
In the second alternative, the run is extended with an unsuccessful attempt by
process 1 .

L is initially established by setting h to 0 and Y.0 to € . (Recall from section 2
that € is a run of every implementation.) To establish the invariance of L , we
show that each conjunct is preserved by the assignments in the alternatives.

For the first conjunct, viz., (Y.h free) , this follows from (Loose), (Free)
and the form of the two assignments. For the third conjunct, viz.,

Vjzax <U; CYh = z<8S;¢M)

we note that invariance in the first alternative follows from the fact that Y.h <
S1 < Sy ¢ M (see comment after (C0)), and, in the second alternative, follows
directly from the guard.

For the second conjunct, viz., (Y.h € M) , we observe, for the first alterna-
tive:

(Yh « S1e M) AN (Y.h free)

= { (Loose) and (Free) }
(Y.h @« S; € M) A (0 loose in Y.h < S7)
= {(C1), with j,z:=0,Y.h <« S1 }

(YYhaS «SeM) Vv (YhaS «UyeM)

= { first disjunct is false, from (C0) }
YhaS «UyeM

= { (Loose) and (C2) with j,z :=1,Y.h « S; <« Up }
YhaS: «Uy<a R €M

And for the second alternative:

(Y.he M) N (Y.h free)

= { (1 loose in Y.h) , (C1) with j,z :=1,Y.h }
(YYh «U eM) Vv (Y.h< S €M)

= { (Y.h « 81 ¢ M) , from the guard for the alternative }
YhaU€eM

By construction, for all k , Y.k C Y.(k+ 1) , thus the limit of YV is defined.
Let r denote this limit. From the fact that L is invariant, we conclude, applying
(C4), that r is a run of M .

We show that r is unfair as follows: if the first alternative is selected only
finitely often, r has an infinite suffix in which U; occurs infinitely often, and S
does not occur; otherwise, the first alternative is selected infinitely often, Uy
occurs infinitely often in r , whereas Sy does not occur. In either case, r does
not satisfy (Fair).

(End of Proof of Theorem.)

5 Summary

Our result is similar in spirit to a result by Fischer, Lynch and Paterson (see
[0]), which showed the impossibility of distributed consensus in the presence
of even one failure. We have shown that even a single failed process makes it
impossible to implement fair resource allocation.

Acknowledgements. We are grateful to the Seuss Group at the University of
Texas at Austin for their comments. In particular, we thank Will Adams for
pointing out a problem with an earlier proof.

References

[0] Michael J.Fischer, Nancy A. Lynch, Michael S. Paterson, Impossibility of
Distributed Consensus With One Faulty Process. In: Journal of the ACM,
Vol.32, No.2, pp.374-382, 1985.

