DOI 10.1007/s00165-006-0022-3
BCS ©2007 Formal Aspects

Formal Aspects of Computing (2007) Of Com puti n g

A mini challenge: build a verifiable filesystem*

Rajeev Joshi'?, Gerard J. Holzmann'

Laboratory for Reliable Software, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
E-mail: Rajeev.Joshi@jpl.nasa.gov; Gerard.J. Holzmann@jpl.nasa.gov
24800 Oak Grove Drive, MS 301-285, Pasadena, CA 91109, USA

Abstract. We propose tackling a “mini challenge” problem: a nontrivial verification effort that can be completed
in 2-3 years, and will help establish notational standards, common formats, and libraries of benchmarks that will
be essential in order for the verification community to collaborate on meeting Hoare’s 15-year verification grand
challenge. We believe that a suitable candidate for such a mini challenge is the development of a filesystem that
is verifiably reliable and secure. The paper argues why we believe a filesystem is the right candidate for a mini
challenge and describes a project in which we are building a small embedded filesystem for use with flash memory.

Keywords: Verification grand challenge, Filesystem design, Formal verification

1. A mini challenge

The verification grand challenge proposed by Hoare [Hoa03] sets the stage for the program verification commu-
nity to embark upon a collaborative effort to build verifiable programs. At recent meetings in Menlo Park [VGCO05]
and in Zurich [VSTTE], there seemed to be a consensus that a necessary stepping stone to such an effort would
be the development of repositories for sharing specifications, models, implementations, and benchmarks so that
different tools could be combined and compared.

We believe that the best way of reaching agreement on common formats and forging the necessary collaborations
to build such a repository is to embark upon a shorter-term “mini challenge”: a nontrivial verification project
that can nonetheless be completed in a short time. An ideal candidate for such a mini challenge would have several
characteristics: (a) it would be of sufficient complexity that traditional methods such as testing and code reviews
are inadequate to establish its correctness, (b) it would be of sufficient simplicity that specification, design and
verification could be completed by a dedicated team in a relatively short time, say 2-3 years, and (c¢) it would
be of sufficient importance that successful completion of the mini challenge would have an impact beyond the
verification community.

At the Menlo Park workshop, some participants (notably Amir Pnueli) suggested that a suitable candidate would
be the verification of the kernel! of the Linux operating system [Pnu05]. While the task of verifying the Linux ker-
nel undoubtedly meets conditions (a) and (c) above, it does not meet condition (b). In fact, given that the current
Linux kernel is well over four million lines of source code, it seems a tall order to write a formal specification
for it within 2 years, much less verify the correctness of the implementation. Instead, we propose that a more
suitable candidate for such a mini challenge would be the development of a verifiable filesystem. We believe there

Correspondence and offprint requests to: Rajeev Joshi, E-mail: Rajeev.Joshi@jpl.nasa.gov, URL:http://eis.jpl.nasa.gov/lars

* The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

1 Actually, Pnueli suggested verifying “Linux”; we assume he meant the Linux kernel.

R. Joshi, G.J. Holzmann

are several reasons why a filesystem is more attractive as a first target for verification than an operating system
kernel.

Firstly, most modern filesystems have a clean, well-defined interface, conforming to the POSIX standard [POSIX],
which has been in use for many years. Thus writing a formal specification for a POSIX-compliant filesystem would
require far less effort than writing a kernel specification. In fact, one could even write an abstract reference file-
system implementation which could be used as the specification for a verification proof based on refinement.
Secondly, since the underlying data structures and algorithms used in filesystem design are very well understood,
a verifiable filesystem implementation could conceivably be written from scratch. Alternatively, researchers could
choose any of several existing open-source filesystems and attempt to verify them. This makes filesystem verifi-
cation attractive, since it allows participation by both those researchers interested in a posteriori verification, as
well as those interested in “constructing a program and its proof hand-in-hand”.

Thirdly, although filesystems comprise only a small portion of an operating system, they are complex enough
that ensuring reliability in the presence of concurrent accesses, unexpected power losses and hardware failure is
nontrivial. Indeed, recent work by Yang et al. [YTEMO04] shows that many popular filesystems in widespread use
have serious bugs that can have devastating consequences, such as deletion of the system root directory.

Finally, since almost all data on modern computers is now managed by filesystems, their correctness is of great
importance, both from the standpoint of reliability as well as security. Development of a verified filesystem would
therefore be of great value even beyond the verification community.

2. Directions and challenges

The goal of our mini challenge is to build a verifiable filesystem. In particular, we are interested in the problem
of how to write a filesystem whose correctness can be checked using automated verification tools. After decades
of experience with automatic program verification, we know that proving nontrivial correctness properties of a
modern filesystem inevitably requires that key design knowledge be captured and expressed in machine readable
forms in order to guide verification tools. This includes (a) a formal behavioral specification of the functionality
provided by the filesystem, (b) a formal elaboration of the assumptions made of the underlying hardware, and (c) a
set of invariants, assertions, and properties concerning key data structures and algorithms in the implementation.
We discuss each of these artifacts below.

2.1. Specification

Most modern filesystems are written to comply with the POSIX standard [POSIX] for filesystems. This standard
specifies a set of function signatures (such as creat, open, read, write), along with a behavioral description
of each function. However, these behavioral descriptions are given as informal English prose, and are therefore
too ambiguous and incomplete to be useful in a verification effort. The first task therefore is to write a formal
specification of the POSIX standard (or at least of a substantial portion of the standard) either as a set of logical
properties or as an abstract reference implementation. Such formal specifications have been written in the past: for
instance, by Morgan and Sufrin [MoS84], who wrote a specification of the UNIX filesystem in Z, and by Bevier
et al. [Bev95], who wrote a specification for the Synergy filesystem in Z (and also partially in ACL2). Although
these specifications did not completely model POSIX behavior (for instance, neither completely modeled error
codes, nor file permissions), they could serve as starting points for developing a more complete specification.

2.2. Assumptions about hardware

In order to provide a rigorous formal statement of the properties of the filesystem (especially its robustness with
respect to power failure), it is necessary to rely on certain behavioral assumptions about the underlying hardware.
In order to make the filesystem useful, it is necessary to understand what assumptions can reasonably be made
about typical hardware such as hard drives or flash memory. These assumptions need to be explicitly identified
and clearly stated, as opposed to used implicitly in correctness proofs (as is often the case). In the ideal situation,
the filesystem would be usable with different types of hardware, perhaps providing different reliability guarantees.

A mini challenge

2.3. Properties of data structures and procedures

As noted before, an attractive feature of the proposed mini challenge is that one could either write a verifiable file-
system from scratch, or verify an available filesystem. In either case, however, in order to use automatic checking
tools to prove nontrivial correctness properties of the implementation, it will inevitably be necessary to identify
and express design properties such as data structure invariants, annotations describing which locks protect which
data, and pre- and post-conditions for library functions. Most typical filesystems require use of many common
data structures such as hash tables, linked lists, and search trees. A proof of filesystem correctness would there-
fore result in development of libraries of formally stated properties and proofs about these data structures, which
would be useful in other verification efforts as well.

3. A reliable flash filesystem for embedded systems

At the NASA/JPL Laboratory for Reliable Software (LaRS), we are interested in the problem of building reli-
able software that is less reliant on following traditional ad-hoc processes and more reliant on use of automated
verification tools. As part of this effort, we are currently engaged in a pilot project to develop a reliable filesystem
for flash memory, for use as nonvolatile storage on board future missions.

Flash memory has recently become a popular choice for use on spacecraft as nonvolatile storage for engineering
and data products, since it has no moving parts, consumes low power, and is easily available. There are two com-
mon types of flash memory, NAND flash and NOR flash [Dataio]. While NOR flash is more reliable and easier
to program, it has lower density and poor write and erase times, and is therefore less attractive as a data storage
device. Thus NOR flash is typically used for storing data that does not change too often, such as executable
binaries and configuration parameters. In contrast, NAND flash has higher density and better write and erase
times, and is therefore a more attractive medium for storing data that changes more often, such as telemetry and
data collected by on-board instruments.

While it is possible to use flash memory directly as a raw device, it is typically much easier to write robust flight
software if the flash is accessed through a filesystem interface that provides operations for creating, reading,
and writing files and directories. In fact, several recent NASA missions, such as Mars Pathfinder, the twin Mars
Exploration Rovers and the Deep Impact spacecraft, have used POSIX-compliant filesystems to access flash
memory.

Building a robust flash filesystem, however, is a nontrivial task. Performance dictates the use of caches and
write buffers, which increase the danger of inconsistencies in the presence of concurrent thread accesses and
unexpected power failures. To add to the challenge, flash memory, especially NAND flash memory, has certain
failure modes that need to be addressed in software, such as arbitrary bit flips, blocks that unexpectedly become
“bad” (i.e., permanently unwritable), and limited block lifetimes (blocks are likely to become bad after they have
been erased a certain number of times, typically 103 — 10° times). In addition, spacecraft flight software must be
written according to certain rigid constraints; for instance, it may allocate memory from the heap only during
initialization, and should use a (statically) bounded amount of stack space.

Perhaps it is not surprising, then, that recent experience at JPL with flash filesystems has shown that most avail-
able filesystems are not reliable enough for use in critical applications like flight software. In large part, this is
the primary motivation for our interest in building a reliable filesystem. Although less ambitious than the mini
challenge we have described above (which is aimed at building a general purpose filesystem), our project has
similar interests and goals with the mini challenge we have proposed.

4. Summary

An important first step toward the verification grand challenge is the development of a repository containing
specifications, models, and implementations. We believe the best way to develop this repository is to tackle a
“mini challenge” that can be completed in a short period of time, around 2-3 years. An excellent candidate for
such a mini challenge seems to be the development of a verifiable filesystem that is both reliable and secure.
Since filesystems are well-defined and well-understood, different research teams can use any of a wide range of
different approaches to building such a verifiable filesystem: from building it from scratch to verifying one of
many available filesystems. We believe that the problem is well-suited as a mini challenge for the verification
community and will serve as a starting point for the grand verification challenge.

R. Joshi, G.J. Holzmann

References

[Hoa03]
[VGCO05]

[VSTTE]
[Pau05]
[POSIX]

[MoS84]
[Bev9s]

[YTEMO04]

[Dataio]

Hoare T (2003) The verifying compiler: a grand challenge for computing research. J ACM 50(1):63-69

Workshop on the verification grand challenge (2005) SRI international, Menlo Park, CA. See http://www.csl.sri.com/
users/shankar/VGC05

Conference on Verified software: theories, tools, experiments. Eidgendssische Technische Hochschule Ziirich, Ziirich, 10-13,
October 2006. See http://vstte.ethz.ch

Pnueli A (2005) Looking Ahead. Presentation at the Workshop on The Verification Grand Challenge, SRI International, Menlo
Park, CA. Slides available at http://www.csl.sri.com/users/shankar/VGC0O5/pnueli.pdf

The Open Group (2003) The POSIX 1003.1, 2003 edition specification. available online at http://www.opengroup.org/
certification/idx/posix.html

Morgan C, Sufrin B (1984) Specification of the UNIX filing system. IEEE Transa Softw Engi SE-10(2):128-142

Bevier WR, Cohen R, Turner J (1995) A specification for the synergy file system. Technical Report 120, Computational Logic,
Inc., September 1995

Yang J, Twohey P, Engler D, Musuvathi M (2004) Using model checking to find serious file system errors. In: Proceedings of
the conference on operating systems design and implementation (OSDI), San Francisco, December 2004, pp 273-288

Data I/0O A collection of NAND flash application notes, whitepapers and articles. available at http://www.data-io.com/
NAND/NANDApplicationNotes.asp

Received : 13 October 2006
Revised : 6 November 2006
Accepted: 6 November 2006 by C. B. Jones and J. C. P. Woodcock

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

