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Abstract. We propose a notation for specifying event stream abstrac-
tions for use in spacecraft telemetry processing. Our work is motivated
by the need to quickly process streams with millions of events generated
by the Curiosity rover on Mars. The approach builds a hierarchy of event
abstractions for telemetry visualization and querying to aid human com-
prehension. Such abstractions can also be used as input to other runtime
verification tools. Our notation is inspired by Allen’s Temporal Logic,
and provides a rule-based declarative way to express event abstractions.
The system is written in Scala, with the specification language imple-
mented as an internal DSL. It is based on parallel executing actors com-
municating via a publish-subscribe model. We illustrate the solution with
several examples, including a real telemetry analysis scenario.

1 Introduction

A key challenge in operating remote spacecraft is that human operators must
rely on telemetry to assess the status of the spacecraft. Telemetry can be thought
of as an execution trace, a stream consisting of millions of discrete events. These
event streams are difficult to interpret and validate because of their size and
complexity. The current approach to analyzing spacecraft telemetry relies on
ad-hoc scripts that are difficult to write and maintain. We propose a notation
for computing abstractions of event streams, resulting in a hierarchy of inter-
val abstractions, which is useful for telemetry visualization and querying to aid
human comprehension. Our notation is inspired by interval logics, specifically
Allen’s Temporal Logic [2], commonly used in the planning and artificial in-
telligence (AI) domains. We extend a variation of this logic with a rule-based
declarative way to express event abstractions. We also present a system named
nfer (inference), written in Scala, which implements the notation as an internal
Scala domain-specific language (DSL). The nfer system is based on concurrently
executing actors communicating via a publish-subscribe model. We show the ap-
plication of nfer to telemetry received from the Curiosity Mars rover.

Our system differs from traditional runtime verification (RV) systems, in
which a program execution trace is checked against a user-provided specification.

? The research performed by the last two authors was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.



RV usually results in a binary decision (true/false) as to whether the execution
trace satisfies the specification, although variations on this theme have been
developed. These include 3-valued logics (true, false, don’t know) [8] and 4-
valued logics (true, false, true-so-far, false-so-far) [6].

The remaining content of the paper is as follows. Section 2 introduces pre-
liminary notation. Section 3 provides the problem statement and motivation for
this work. Section 4 defines the nfer notation. Section 5 describes the imple-
mentation of the system in Scala, including the DSL. Section 6 illustrates the
application of nfer to a scenario from the Mars Science Laboratory. Section 7
discusses related work. Finally, Section 8 concludes the paper.

2 Preliminary Notation

By B we denote the set of Boolean values {true, false}. By N we denote the set
of natural numbers {0, 1, 2, . . .} and by R we denote the set of real numbers. For
readability, we use the type C = R to represent clock time stamps. By A×B we
denote the cross product of types A and B. By A→ B we denote the set of total
functions from A to B. Functions in A → B can be denoted by lambda terms:
λx.e. A function of type A → B is referred to as a predicate. Predicates with
the same domain type can be composed with Boolean operators. For example,
given f : A→ B and g : A→ B, then (f ∧ g)(x) = f(x)∧ g(x). Given a set S, 2S

denotes the power set of S containing as elements all subsets of S. S∗ denotes
the set of finite ordered sequences over S where each sequence element is of type
S. A sequence σ of length N is a function of type: {n ∈ N|n < N} → S. The i’th
element of a sequence is denoted σ(i). We say that a value v is in σ, denoted by
v ∈ σ iff ∃ i ∈ N such that σ(i) = v. Given a set S, by Sn for a given n ∈ N
(n ≥ 2) we denote the tuple type: S × S × . . . × S (n times).

Let I be a set of identifiers, and let V be a set of values, including strings,
integers, and floating point numbers3. A map is a partial function from identifiers
to values with a finite domain, that is, a function of type I m→ V. We use M to
denote the type of all maps. The empty map is denoted by [ ]. We denote by M⊥
the extension of M with a bottom element: M⊥ = M ∪ {⊥}. Here ⊥ represents
a “no map” value.

An event is a timestamped named tuple of the type E = I × C × M.
An element (id, t,M) of type E is written as id(t,M). A trace is a sequence of
events. The type of traces is denoted by T and is defined by T = E∗. In our
context a trace corresponds to a telemetry stream.

3 Problem Statement

In this section, we briefly outline the requirements to our specification language.
We first illustrate a concrete problem with an example. Subsequently, we outline
the specific needs.

3 V can be any set of values that are part of monitored events.
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3.1 Illustrating Example

Consider the trace shown on the left part of Figure 1, that we assume has been
generated by a spacecraft4. The trace consists of a sequence of events, or EVent
Reports (EVRs) as they are named in space mission operations, each with a
name, a time stamp, and a list of parameters. The events in this particular
trace represent such activities as a boot process starting, a boot process ending,
downlink of data to ground, and operating the antenna and radio.

DOWNLINK      10    size -> 430

BOOT_S        42    count -> 3

TURN_ANTENNA  80

START_RADIO   90

DOWNLINK      100   size -> 420

BOOT_E        160 

STOP_RADIO    205

BOOT_S        255   count -> 4

START_RADIO   286

BOOT_E        312

TURN_ANTENNA  412

RISK

NAME        TIME  PARAMS

BOOT

BOOT

DBOOT

Fig. 1. An event trace and its abstractions

Our concern, in this case, is whether there is a downlink operation during
a 5-minute time interval where the flight computer reboots twice. This scenario
could cause a potential loss of downlink information. Notice the use of the term
interval. We need a form of interval notation. We suggest imposing a structure
on the trace, where these intervals are named and highlighted, as shown on the
right part of Figure 1. Specifically, we want to identify the following intervals: A
BOOT represents an interval during which the spacecraft software is rebooting. A
DBOOT (double boot) represents an interval during which the spacecraft reboots
twice within a 5-minute timeframe. A RISK represents an interval during which
the spacecraft reboots twice and at the same time also attempts to downlink
information.

Our objective now is to formalize the definition of such intervals in a spec-
ification language. Specifically, in this case, we need a rule-based formalism for
formally defining the following three intervals:

1. A BOOT interval starts with a BOOT S (boot start) event and ends with a
BOOT E (boot end) event.

2. A DBOOT (double boot) interval consists of two consecutive BOOT intervals,
with no more than 5-minutes from the start of the first BOOT interval to the
end of the second BOOT interval.

3. A RISK interval is a DBOOT interval during which a DOWNLINK occurs.

4 The trace is artificially constructed to have no resemblance to real artifacts.
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3.2 Desired Features

The specification language should allow a user to:

1. define intervals as a composition of other intervals/events. For example
to define the label BOOT as an interval delimited by the events BOOT S and
BOOT E, or to define a DBOOT to be composed sequentially of two BOOT inter-
vals.

2. refer to time stamps associated with events, as well as generate and later
read start and end times of generated intervals. It should be possible to
define complex time constraints.

3. refer to data associated with events, as well as generate and later read
data of generated intervals using a rich expression language. For example,
a generated interval may have a datum value defined as the sum of two
lower-level interval data.

We believe that Allen’s Temporal Logic (ATL) [2], specifically its operators
for expressing temporal constraints on time intervals, is a good starting point.
In ATL, a time interval represents an action or a system state taking place over
a period. A time interval has a name, a start time, and an end time. ATL offers
13 mutually exclusive binary relations. Examples are: Before(i, j) which holds
iff interval i ends before interval j starts, and During(i, j) which holds iff i starts
strictly after j starts and ends before or when j ends, or i starts when or after j
starts and ends strictly before j ends. An ATL formula is a conjunction5 of such
relationships, for example, Before(A,B) ∧ Contains(B,C). A model is a set of
intervals satisfying such a conjunction of constraints. ATL is typically used in
planning for generating a plan (effectively a model) from a formula, but ATL
can also be used for checking a model against a formula, as described in [20].

Our objective is different from planning and verification. Given a trace, we
want to generate a model (a set of intervals), guided by a specification that
we provide, that represents a layered view of the trace, and is used for system
comprehension.

4 The nfer Notation

4.1 Intervals

Before we more formally introduce the nfer notation, we shall introduce some
further basic semantic concepts. As already mentioned in Section 2, a telemetry
stream (for example received from a spacecraft) is a sequence of events, also
referred to as a trace. In contrast to most runtime verification systems, however,
the nfer notation does not directly operate on such traces. Instead, it operates
on a set of intervals (defined below). We will provide the definition and intuition
behind intervals, and how a trace is converted into an initial set of intervals, on
which nfer operates.

5 A limited form of disjunction is also allowed but not described here.
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An interval represents a named section of a trace, spanning a certain time
period. An interval can carry data as well, using a map. Concretely, an interval
is a 4-tuple of the form (η, t1, t2,M), where η ∈ I is an interval name, t1, t2 ∈ C
are time stamps6 representing the start and end time of the interval, satisfying
the condition t1 ≤ t2, and M is a map in M, the data that the interval carries.
The type of all intervals is denoted by I.

A pool is a set of intervals, that is, an element of type P = 2I. A trace τ is
converted into an initial pool by a function init of type T → P :

init(τ) = { (η, t, t,M) | η(t,M) ∈ τ }

nfer subsequently transforms this initial pool of intervals to a pool containing
as well all abstractions defined by the specification. In the following, we shall
illustrate how such specifications are written.

4.2 Syntax of the nfer Notation

An nfer specification consists of a list of labeling rules of the form:

η ← η1 ⊕ η2 map Φ (1)

where, η, η1, η2 ∈ I are identifiers, ⊕ : C6 → B is a clock predicate on six
time stamps, and Φ : M ×M → M⊥ is a map function taking two maps and
returning a map or ⊥. The syntax contains mathematical functions to simplify
the presentation.

The informal interpretation of such a rule is as follows. Given a pool π,
the rule generates a set of new intervals (a pool), each of the form (η, s, e,M),
provided that in π there exist two intervals (η1, s1, e1,M1) and (η2, s2, e2,M2),
such that the time constraint defined by ⊕ is satisfied: ⊕(s1, e1, s2, e2, s, e), and
such that the map function Φ produces a well-defined map as a function of the
maps of the two input intervals: M = Φ(M1,M2) 6= ⊥. Note that the ⊕ time
constraint constrains the start time s and end time e of the result interval as
well. Hence, one can control the time values of the generated interval.

The time constraint can, for example, express that one interval ends before
the other interval starts (e1 < s2), which is one of the Allen operators. Likewise,
the map function can check whether the input maps M1 and M2 satisfy certain
conditions: if not return⊥, but if so, return a new map to be part of the generated
interval. The time constraint must evaluate to true and the resulting map not
be ⊥ for the rule to apply.

As an example, the following rule generates an abstraction interval named
BOOT from a BOOT S (boot start) event that occurs before a BOOT E (boot end)
event, and furthermore carries the boot count contained in the BOOT S interval:

BOOT← BOOT S ⊕ BOOT E map Φ

where the two functions ⊕ and Φ are defined as follows:

6 Time stamps have no specified units.

5



⊕(s1, e1, s2, e2, s, e) = e1 < s2 ∧ s = s1 ∧ e = e2
Φ(m1,m2) = [count 7→ m1(count)]

Note how the resulting interval’s start time s is constrained to be the start time
of the BOOT S event, and likewise the end time e is constrained to be the end
time of the BOOT E event. Below, we introduce a pre-defined set of candidate
functions for ⊕ inspired by Allen logic to make specifications easier to write,
allowing us instead to write this rule as follows (with the same Φ function and
before denoting the ⊕ function above):

BOOT← BOOT S before BOOT E map Φ

4.3 Semantics of the nfer Notation

The semantics is provided in two steps. First the semantics for the core notation
is provided, second a collection of derived symbols (called operators) are defined,
which map to the core notation.

Semantics of core notation The semantics of the core notation is defined
in three steps: the semantics R of individual rules on pools, the semantics S
of a specification (a list of rules) on pools, and finally the semantics T of a
specification on traces.

Let ∆ be the type of rules. We define the semantics of labeling rules with
the interpretation function R, with the type and definition below, and using the
brackets [[ ]] around syntax being given semantics:

R [[ ]] : ∆ → P → P
R [[ η ← η1 ⊕ η2 map Φ ]] π =
{ (η,s,e,M) ∈ I |

∃ s1 ,e1 ,s2 ,e2 ∈ C • ∃ J ,K ∈ M •
(η1 ,s1 ,e1 ,J) ∈ π ∧
(η2 ,s2 ,e2 ,K) ∈ π ∧
⊕(s1 ,e1 ,s2 ,e2 ,s,e) ∧
M= Φ(J ,K) 6=⊥

}

That is, given a rule δ and a pool π, a new pool is returned by: R[[δ]]π, containing
(only) the new intervals generated. The definition reads as follows. A pool is
returned containing intervals (η, s, e,M), where there exist two intervals in π,
with names η1 and η2, and where the time constraint is satisfied, and the map
resulting from applying Φ to the respective sub-maps is not ⊥.

Next, we define the semantics of a list of rules, also referred to as a specifica-
tion. For this we define the following one-step interpretation function S, which,
given a set of rules and a pool, returns a new pool extending the input pool
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with added abstraction intervals resulting from taking the union of the pools
generated by each rule:

S [[ ]] : ∆∗→ P → P
S [[ δ1 . . . δn ]] π = π ∪ R [[ δ1 ]] π ∪ . . . ∪ R [[ δn ]] π

That is, given a specification δ1 . . . δn and a pool π, a new pool is returned by:
S[[δ1, . . . , δn]] π. Finally, we define the semantics of a specification applied to a
trace (a sequence of events). For this we define the interpretation function T ,
which given a list of rules and a trace returns a pool containing abstraction
intervals:

T [[ ]] : ∆∗→ T → P
T [[ δ1 . . . δn ]] τ =

least π ∈ P such that
init(τ) ⊆ π
∧

π = S [[ δ1 . . . δn ]] ( π )

That is, given a specification δ1 . . . δn and a trace τ , a pool of abstractions is
returned by: T [[δ1, . . . , δn]]τ . The resulting pool is defined as the least fixed-point
of S[[δ1 . . . δN ]] : P→ P that includes init(τ), corresponding to repeatedly apply-
ing S[[δ1 . . . δN ]] , starting with init(τ), and until no new intervals are generated.
Note that the least fixed-point exists since the semantic functions are monotonic.
However, our simple iterative algorithm may not reach the least fixed-point if it
is an infinite set. In practice, the nfer tool processes rules in a slightly different,
but equivalent, order to improve performance.

4.4 Derived Forms

As hinted at the end of Section 4.2, a collection of ⊕ functions have been pre-
defined, along with symbols (operators) denoting them. These symbols are shown
in Table 1 together with their function definitions. Note that s1 and e1 are the
start and end times for the left-hand interval, s2 and e2 are the start and end
times for the right-hand interval, and s and e are the start and end times for
the resulting interval. For all operators, except the slice operator, the start and
end times of the resulting interval is the respectively left-most and right-most
time stamps of the involved intervals. For the slice operator, the resulting time
span denotes the overlapping section of two intervals. Note that the definitions
of these operators differ from those of the Allen logic operators in [2], which are
defined to be mutually exclusive, whereas nfer’s operators are not. This is due
to our different practical needs.

The informal explanation of the operators is as follows: A before B: A ends
before B starts; A meet B: A ends where B starts; A during B: all of A occurs
during B; A coincide B: A and B occur at the exact same time; A start B:
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Operator ⊕ ⊕(s1, e1, s2, e2, s, e)

before e1 < s2 ∧ s = s1 ∧ e = e2
meet e1 = s2 ∧ s = s1 ∧ e = e2

during s1 > s2 ∧ e1 6 e2 ∧ s = s2 ∧ e = e2
coincide s = s1 = s2 ∧ e = e1 = e2

start s = s1 = s2 ∧ e = max(e1, e2)
finish s = min(s1, s2) ∧ e = e1 = e2

overlap s1 < e2 ∧ s2 < e1 ∧ s = min(s1, s2) ∧ e = max(e1, e2)
slice s1 < e2 ∧ s2 < e1 ∧ s = max(s1, s2) ∧ e = min(e1, e2)

Table 1. nfer operators

A starts at the same time as B; A finish B: A finishes at the same time as B;
A overlap B: A and B overlap in time; A slice B: A and B overlap in time, and
only the overlapping time span is returned. For the before operator, the nfer

tool returns the shortest matching intervals, whereas the semantics specifies that
all matching intervals are returned.

The next abbreviation concerns further time constraints a user may want to
impose. The core rule notation, see (1) on page 5, allows for any time constraints
to be expressed. Possible constraints include the just introduced relational oper-
ators, but also time spans, such as stating that an event B should follow an event
A within 10 time units. We present the following shorthand for allowing the spec-
ification of additional time constraints in addition to the just introduced oper-
ators. Let � ∈ {before,meet,during, coincide, start,finish,overlap, slice},
and let �p denote the corresponding clock predicate. The following abbreviation
is introduced:

η ← η1 � η2 within Θ map Φ

where Θ : C6 → B is a predicate on six time stamps. This is synonymous with:

η ← η1 (�p ∧Θ) η2 map Φ

The one operator (clock predicate) rule format (1) on page 5 presents a simple
notation with a clean semantics. However, further convenient syntax allows rules
containing more than one operator on the right-hand side, for example: A ←
(B before C) overlap D. Such rules are mapped into the core form resulting in
additional auxiliary rules. The internal Scala DSL described in Section 5 allows
such enriched rules. Note that we shall allow time constraints (within) and map
transformations (map) to be left out in rules, in which case they assume the
default function values respectively λs1, e1, s2, e2, s, e. true and λm1,m2. [ ].

4.5 Example

As an example, we will formalize the three rules that were informally stated in
Section 3.1. The specification similarly consists of three rules:
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BOOT ← BOOT S before BOOT E map (λ m1,m2 . [count 7→ m1(count)])

DBOOT ← BOOT before BOOT within (λ s1,e1,s2,e2,s,e . e−s 6 300)
map snd

RISK ← DOWNLINK during DBOOT map snd

The rules should be mostly self-explanatory (time is assumed measured in sec-
onds). The first rule creates from the two sub-maps m1 and m2 a new map,
mapping count to the same value as in m1. The function snd selects m2 from a
binary tuple (m1,m2).

Let us illustrate how this specification is evaluated on the trace in Figure
1. This trace is first converted into an initial pool. The semantic S function on
(page 7) will go through three iterations when applied to this initial pool before
a fixed-point is reached. The added intervals in each iteration are as follows:

1 : { (BOOT, 42, 160, [count 7→ 3]), (BOOT, 255, 312, [count 7→ 4]) }
2 : { (DBOOT, 42, 312, [count 7→ 4]) }
3 : { (RISK, 42, 312, [count 7→ 4]) }

5 Implementation

In this section, we outline the nfer infrastructure and internal DSL, implemented
in the Scala programming language.

5.1 The nfer Infrastructure

The nfer implementation is based on Scala actors communicating via asyn-
chronous message passing through a publish/subscribe model built with Apache
Kafka [16]. Figure 2 shows the nfer implementation’s internal configuration
corresponding to the double boot example from Section 4.5. The Kafka pub-
lish/subscribe framework is represented in the center by the Shared Telemetry
Bus. Each actor is represented by a circle, with arrows showing the messages
that are passed to the actor (those it subscribes to), as well as the messages the
actor publishes back.

Specifically, each rule in an nfer specification results in an actor, which
subscribes to events/intervals occurring on the right-hand side of the rule, and
publishes the interval mentioned on the left-hand side of the rule to the shared
bus. This means that rule actors are only passed events and intervals which
are pertinent to their execution. For example, the RISK actor subscribes to
both DBOOT intervals and DOWNLINK events, and publishes back RISK intervals.
A special actor receives messages from the spacecraft and publishes them to the
bus. When a rule actor publishes an interval, any subscribers will be notified
and can build on this interval to create yet new intervals. The nfer notation is
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declarative and the order in which rules are declared is unimportant. Likewise,
the order in which actors execute is also unimportant, since the results of one
actor cannot inhibit the behavior of any other actor. If the DSL offered a negation
operator that would not be the case.

Shared 

Telemetry 

Bus

BOOT 

Actor
DBOOT 

Actor

RISK 

Actor

Event 

Stream

BOOT_S

BOOT_E

BOOT

BOOT

DBOOT

DBOOT
DOWNLINK

RISK

BOOT

Event 

Publisher

Fig. 2. Implementation of the example from Section 4.5

The implementation can process events online, as they come down to ground
from the spacecraft, as well as events produced at an earlier point in time, and
stored in a database. The full telemetry stream in principle includes all events
from the start of the mission. Normally ground operators are only interested in
recent events. However, there can be a need to analyze the telemetry stream
from the start of the mission. It is not expedient to process all events in the
full telemetry stream from the start of the mission whenever the nfer system is
activated. Instead, nfer can be used to incrementally create intervals, which can
then be stored for later use as an abstraction of the entire telemetry stream.

5.2 The Internal Scala DSL

This section introduces the internal Scala DSL for writing nfer specifications.
Consider the double boot example written in the nfer notation in Section 4.5.
This example can be written as follows in the internal DSL that we shall describe:

class DoubleBoot extends Nfer {
"BOOT" :− ("BOOT_S" before "BOOT_E" map {

case (m1,m2) ⇒ Map("count" → m1("count"))
})

"DBOOT" :− ("BOOT" before "BOOT" within 300 map ( . 2))

"RISK" :− ("DOWNLINK" during "DBOOT" map ( . 2))
}
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The complete specification is a class, named DoubleBoot, that extends the Nfer

class, which provides all the operators needed for writing rules. The specification
in the DSL has largely the same format as the specification in our notation.
Some differences include the use of the symbol :- instead of ←, and the map
function defined using Scala’s partial function case-notation. Also, note that the
constant 300 is automatically lifted by an implicit function (defined in the Nfer

class) into a predicate on six time stamps with the expected semantics. Each rule
in turn is essentially a function call having the side-effect of creating an actor
that subscribes and publishes on the shared telemetry bus. For example, the first
rule corresponds to a function call (series of function calls really) that will create
an actor, which consumes BOOT S and BOOT E events (represented as intervals)
from the telemetry bus and returns BOOT intervals back to the bus. Although it
does not look like a normal function call, it is equivalent to the following call:

liftRuleName("BOOT").:−(
(liftOperand("BOOT_S").before(liftOperand("BOOT_E"))).map {

case (m1,m2) ⇒ Map("count" → m1("count"))
)

This equivalence holds due to Scala’s features for defining domain-specific lan-
guages. First of all, Scala allows method names to be non-alphanumeric, as for
example :−. Second, Scala allows the omission of dots and parentheses in calls
of methods on objects. For example, "BOOT" :− (...) is just another way of writ-
ing "BOOT" .:−(...) . Finally, we notice that the method :− is called on the string
object "BOOT". However, no such method is defined on strings. Scala’s implicit
function concept can again be used here to lift the "BOOT" string to an object
which defines a :− method. The following function (defined in the Nfer class)
is applied automatically by the Scala compiler to resolve the typing conflict, as
shown above:

implicit def liftRuleName(s: String) = new {
def :−(op: Op) = makeRules(s, op)

}

The right-hand side of the rule contains the expression: "BOOT_S" before "BOOT_E",
which again is equivalent to: "BOOT_S".before("BOOT_E"), and again implicit lifting
is needed. The following implicit function lifts "BOOT_S" to an object of type Op,
on which methods like before are defined:

implicit def liftOperand(s: String) = new Op(s)

The Op class itself provides all the infix binary temporal operators, such as before,
during, etc. as well as the functions within and map for defining time constraint
and map functions (the latter two update variables holding these functions).
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Note how these functions return new instances of the Op class such that further
infix binary methods can be applied in a chain-like manner.

case class Op(s : String, left : Op = null, right : Op = null, op: Fun = null)
{

def before(e: Op) = Op(..., this, e, BEFORE)
def during(e: Op) = Op(..., this, e, DURING)
...

}

Each instantiation of the Op class takes two arguments and an operator defining
how they should be related. For example, BEFORE is defined as follows:

def BEFORE(...) {
makeRule(...,
{ case (i1 : Interval , i2 : Interval ) ⇒ (i1 .end < i2.start )},
{ case (i1 : Interval , i2 : Interval ) ⇒ (i1 . start , i2 .end) })

}

The parameters to the makeRule function are (some dotted out): the name of the
rule, two patterns (interval names essentially) that the generated actor subscribes
to, the function evaluating the map, the function evaluating any added time
constraints beyond the before, during, etc. constraints, and finally two functions
(shown) defining respectively (1) the temporal operator, in this case an interval
occurs before another if the end time of the first is less than the start time of the
second, and (2) the boundary times of the generated interval as the start time
of the first and the end time of the second.

6 Example Application to Warning Analysis

As noted earlier, we are currently applying the nfer tool to processing telemetry
from the Curiosity rover. In this section, we briefly describe an application to a
task, that is traditionally performed either manually or by ad-hoc scripts. We
consider the problem of automatically labeling warning messages that are ex-
pected due to known idiosyncrasies of the system. EVRs produced by Curiosity
are associated with a severity level, which is used to distinguish between ex-
pected and unexpected behavior. One of the severity levels is WARNING, which
indicates potentially anomalous behavior. Unfortunately, due to various idiosyn-
crasies of hardware and software, there are several situations in which warning
EVRs do not denote real anomalies. As a result, one of the roles of the ground
operations team is to label those received warnings that are to be ignored; this
work needs to be completed before the next plan can be uplinked to the space-
craft. To speed up analysis, we have implemented a set of rules that can label
EVRs corresponding to known idiosyncrasies. As a result, ground operators can
limit their attention to only unlabeled warning EVRs. We describe some of these
rules below.
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The first pair of rules capture a known (benign) race condition in the soft-
ware caused by a thread reading from a shared buffer before another thread has
finished its write. While race conditions can be serious, in this case, the effect is
that the reading thread generates a warning, and ignores the data. Because the
error was discovered late in the mission, and the impact is benign, no code fix
was deemed necessary. The rule below looks for this known scenario by checking
for an occurrence of TLM TR ERROR during execution of either a MOB PRM or an
ARM PRM command. A command execution interval itself is defined by a pair of
CMD DISPATCH and CMD COMPLETE events whose maps agree on the "cmd" key,
which denotes the command name.

"cmdExec" :− ("CMD_DISPATCH" before "CMD_COMPLETE" map {
case (m1, m2) ⇒

if (m1("cmd") == m2("cmd")) Some(Map("cmd" → m1("cmd"))) else None
})

"telecom0208" :− ("TLM_TR_ERROR" during "cmdExec" map {
case ( , m2) ⇒ if ((m2("cmd") == "MOB_PRM") || (m2("cmd") == "ARM_PRM"))

Some(Map()) else None
})

The second rule involves a timing consideration. In this case, a power-on com-
mand fails and then recovers within 15 seconds. Since the behavior is predictable,
and benign, the two warnings about command failure and subsequent recovery
are labeled as expected. Note that for readability we have simplified the signature
of the delay15 function.

def delay15(s1,e1,s2,e2,s ,e : Double): Boolean = e − s <= 15

"instCmdFail" :− ("INST_PWR_ON" before
("INST_CMD_FAIL" before "INST_RECOVER") within delay15)

As we illustrated in Section 5.2, this can be written more simply by just providing
15 as argument to the within function, which would have the same effect.

"instCmdFail" :− ("INST_PWR_ON" before
("INST_CMD_FAIL" before "INST_RECOVER") within 15)

The third set of rules labels a situation in which a warning about task starvation
is expected whenever the vdp activity overlaps with a communications activity
(labeled comm). In this case, we use the slice operator to identify the interval of
overlap between the vdp and comm intervals:

"comm" :− ("WIN_BEGIN" before "WIN_END" map {
case (m1, ) ⇒ Map("wid" → m1("wid"))

})
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"vdp" :− ("VDP_START" before "VDP_STOP")

"starvationOk" :− "TASK_STARVATION" during ("vdp" slice "comm")

7 Related Work

An earlier effort to develop a telemetry comprehension tool is described in [14],
which provided a Scala DSL for writing a subset of the specifications offered in
this paper. That work was inspired by yet earlier efforts using the rule-based
system LogFire [13] for analyzing telemetry streams, as described in [15]. Log-
Fire, however, offers a more traditional rule notation, which becomes verbose for
writing the desired specifications (similar to state machines being more verbose
than regular expressions).

Interval logics are common in the planning domain. Allen formalized his al-
gebra [2], which has come to be known as ATL, for modeling time intervals.
He argued that it was necessary to model relative timing with significant im-
precision, and proposed his algebra’s use in planning systems [3]. Many other
planning languages have been proposed which rely on these same concepts, in-
cluding PDDL [18] and ANMLite [7].

The concepts introduced and formalized by these interval logics are useful
for modeling telemetry data, but the languages themselves have been principally
designed for planning, not verification. Some efforts have been made to adapt
them to that role, however. An effort is described in [22], where the suitability of
the ANMLite system for verification was evaluated, with some positive results,
but it was ultimately concluded that the solver techniques were not yet mature
enough to be useful. A translation from LTL to PDDL is described in [1] as a
means to leverage PDDL’s solver for verification.

Conversely, [20] defines a translation of a modified ATL to LTL for mon-
itoring. It is concluded, however, that this approach is impractical since the
generated monitoring automata become too large, even for small ATL formulas.
Instead, they introduce a simple algorithm for that purpose using a state machine
for each relationship. For example, a state machine is created for Before(A,B),
which is violated if a B is seen before an A. Our work differs in some respects:
(i) Instead of monitoring ATL relationships for verification, we generate a re-
lationship hierarchy for supporting system execution comprehension. (ii) We
handle parameterized intervals. (iii) We allow any constraints on time and pa-
rameter values, not just the 13 ATL constraints. (iv) In their system, an interval
is unique, while in nfer it can occur multiple times. Other interval logics have
been designed specifically for verification purposes, such as Interval Temporal
Logic (ITL) [19], the Duration Calculus (DC) [12], and Graphical Interval Logic
(GIL) [9].

Our work has strong similarities to data-flow (data streaming) languages.
A recent example is QRE [4], which is based on regular expressions, and offers
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a solution for computing numeric results from traces. QRE allows the use of
regular programming to break up the stream for modular processing, but is lim-
ited in that the resulting sub-streams may only be used for computing a single
quantitative result, and only using a limited set of numeric operations, such as
sum, difference, minimum, maximum, and average, to achieve linear time (in
the length of the trace) performance. Our approach is based on Allen logic, and
instead of a numeric result produces a set of named intervals, useful for visual-
ization (and thereby systems comprehension). Furthermore, data arguments to
intervals can be computed using arbitrary functions.

RV systems have been developed which aggregate data as part of the verifi-
cation [11, 5]. Statistical model checking [17] is an approach collecting statistical
information about the degree to which a specification is satisfied on multiple
traces. Pushing statistical analysis further, in specification mining [10, 21] the
user provides no specification, and the system learns one by sampling nominal
runs or by static analysis of the source code. This approach relieves the user of
writing specifications and allows them to better understand the behavior of the
software.

8 Conclusion

We have introduced the nfer rule-based notation and system for labeling event
streams. The result of a labelling is a set of intervals: named sections of the
event stream, each including a start time, and end time, and a map holding
data selected from the events and sub-intervals making up the interval. Typi-
cally intervals are built on top of intervals, forming a hierarchy of abstractions.
The result can for example be visualized, and can generally help engineers to
better comprehend the structure of an event stream. The nfer system is imple-
mented as an internal Scala DSL. Each interval-generating rule spawns an actor,
that subscribes to events and/or sub-intervals, and publishes new intervals in
the publish/subscribe architecture. Future work includes optimizing the imple-
mentation; handling missing telemetry; support for visual entering of rules and
visualization of results; improving the internal Scala DSL; and allowing rules
to be written in Python (commonly used by engineers) and encoded in JSON.
The problem has been inspired by actual planetary space mission operations,
specifically the Mars Curiosity rover, and the solution is being evaluated for use
by the next Mars rover mission in 2020.
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