
A Projective Geometry Architecture for Scientific Computation

Bharadwaj S . Amrutur Rajeev Joshi Narendra K. Karmarkar

AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract.

A large fraction of scientific and engineering computations involve sparse matrices. While
dense matrix computations can be parallelized relatively easily, sparse matrices with arbitrary
or irregular structure pose a real challenge to designers of highly parallel machines. A
recent paper by Karmarkar [KAR 911 proposed a new parallel architecture for sparse matrix
computations based on finite projective geometries. Mathematical structure of these geometries
plays an important role in d&ning the interconnections between the processors and memories
in this architecture, and also aids in &ciently solving several difficult problems (such as load
balancing, data-routing, memory-access conflicts, etc.) that are encountered in the design of
parallel systems. I n this paper we discuss some of the key issues in the system design of such a
machine, and show how exploiting the structure of the geometry results in an Gcient hardware
implementation of the machine. We also present circuit designs and simulation results for key
elements of the system: a 200 MHzpipelined memory; a pipelined multiplier based on an d e r
unit with a delay of 2ns; and a 500 Mbitls CMOS inputloutput buffer.

1 Introduction

A large fraction of scientific and engineering computations involve sparse matrices. While
dense matrix computations can be parallelized relatively easily, sparse matrices with arbitrary
or irregular structure pose a real challenge to designers of highly parallel machines. A
recent paper by Karmarkar [KAR 911 proposed a new parallel architecture for sparse matrix
computations based on mathematical objects called finite projective geometries. The structure
of these geometries defines the interconnections between processors and memories, and also
helps solve the difficult tasks of load balancing, avoiding conflicts, bandwidth matching,
data routing etc. This paper describes the architecture and discusses some of the key issues
involved in the implementation of a typical machine with this architecture. We show how
exploitingthe mathematical smcture of the underlying geometry results in an efficient hardware
implementation of the machine. We also present circuit designs and simulation results for key
elements of the system: a 200 MHz pipelined memory; a pipelined multiplier based on an adder
unit with a delay of 2ns; and a 500 Mbir/s CMOS input/output buffer.

2 Description of the architecture

2.1 Computational environment

The proposed architecture is meant to be used as an attached accelerator to a general purpose
host processor. The accelerator and the host share a global memory system (see Fig 1). The
main program on the host, while computationally intensive subroutines are to be executed
on the attached accelerator. The shared memory consists of partitioned memory modules, which
are shared by the processors in the accelerator over an interconnection network. Since the host
and the accelerator share the memory system, it is not necessary to communicate large amounts

Parallel Archircctwc 6s

c--c GEOMETRY

ACCELERATOR MEMORY

Flgure 1 : Computatlonal Environment

of data between the two on a separate U0 bus. Only certain structural information such as base
addresses of arrays need to be unnmunicatul f" the host processor to the attached accelerator
before invoking a submutine to be exezuted on the accelerator.

2.2 Finite projective geometries

We now describe mathematical c" ic t s h w n as finite projective geometries, which play
an important role in defining the dte". In later subse.ctions, we will discuss how the
srmcture of these geometries aids in efficiently solving several difficult problems eflcountered
in the design of parallel systems. such as load balancii. data routiq, memory access conflicts.
etc.

Consider a finite field, 3. = GF(s) which has s = p" elements. where p is a prime, and
le a positive integer. A projective geometry of dimension d. denoted by Pd(F',). is the set
of all one dimensional subspaces of the (d + l) -d imens id vector space 3!+' over the field
3,. A one dimensional subspace of F$l generated by x, xE 3,ds1, x # 0. is the set of all
nonzero elements of the form Ax. X E 3.. Thesc subspaces are the points of the projective
geometry. S i there are (sd+l - 1) nonmu elements in 3,d+', and (s - 1) no~lzero elements
in 3,. the number of points in the geometry, nd, is given by (sd+l - l)/(s - I). SiiIady. an
m-dimensional subspace of the projective geometry consists of all one dimensional subspaces
of an (m + l)-dimensional subspace of F;+l. If {bo, bl, . . . bm) forms a basis of this vector
subspace. then the elements of the subspace are of the form

m

aibi , where ai E Fa
i=O

The number of elements in the subspace, n,. is given by (sm+' - l) / (s - 1). The set of all
m-dimensional subspaces of Pd(3,) is denoted by 0,. For n 2 m, define the function

(p+' - l) (p - 1). . . (p - m + l - 1)
(P + l - 1) (P - 1) . * *(s - 1) 4(n, m, 8) =

Let 0 5 1 < m 5 d. Then the number of I-dimemional subspaces of Pd(F6) contained in a given
m-dimensional subspace is given by H m , I , s). and the number of m-dimensional subspaces of
Pd(3.) containing a given ldmensional subspace is given by Hd - I - 1, m - 1 - 1,s).

66 International Conference on Application Specific Array Processors

2.3 Interconnection scheme

Given a finite projective geometry of dimension d, we define the architecture as follows.
Choose a pair of dimensions 0 5 d, < d, 5 d. Put processors in the system in a one-to-one
correspondence with subspaces of dimension d,, and put memory modules in a one-to-one
correspondence with subspaces of dimension d,. Form a connection between a processor
and a memory module iff the subspace corresponding to the processor contains the subspace
corresponding to the memory module. From the discussion above, the number of processors in
the system will be d(d, d,, s), and the number of memory modules will be d(d, d,, s). Each
processor will be connected to 4(dp, d,, s) memory modules, and each memory module will
be connected to +(d - d, - 1, d, - d, - 1, s) processors. If we are interested in a symmetric
architecture, with an equal number of processors and memory modules, then we must choose d,
and d, such that d = d, + d, + 1. A more detailed discussion of projective geometries, along
with some examples of interest, appears in [KAR 911.

2.4 Load assignment

With the above correspondence between subspaces of the geometry and processors (and
memories), the assignment of computational load to processors can automatically be done at a
fine-grain level. To illustrate, consider a binary operation

a t a o b

Suppose operand a is in memory module Mi, and b is in memory module Mi. Then we associate
an index pair (i , j) with this operation. (Similarly, we associate an index triplet with a temary
operation). The processor Pi responsible for doing this operation is determined by a function f
that depends on the geometry :

Thus operations having the same associated index pairs (or triplets) always get assigned to the
same procesor. Furthermore, the function f is compatible with the structure of the geometry i.e.,
processor Pr has connections to memory modules Mj and M,.

1 = f(i,j)

2.5 Perfect patterns and perfect sequences

We now introduce the concepts of perfect patterns and pe$ect sequences which restrict the
combinations of words that can be accessed in one cycle. These combinations are designed
so that no conflicts can arise in either accessing the memories or in sending the accessed
data through the interconnection network. We define a perfect access pattem for a symmetric
architecture based on a 4-dimensional geometry. In this architecture, memory modules are in a
one-to-one correspondence with lines, and processors are in a one-to-one correspondence with
planes. A memory module is connected to a processor iff the line corresponding to the memory
module lies on the plane corresponding to the processor.

Suppose the number of lines (and hence the number of planes) is n. A perfect access pattem
P is a collection of n non-collinear triplets,

P = (P , , qt, f ,) I P,, qt, f 1 E Qo, dzm(p , , q,, T ,) = 2, i = 1 . . . n}

satisfying the following properties:

1. Let U,, i = 1 . . . n denote the lines generated by the first two points of each triplet

211 = (P,,qt)

P d k l Architecture 61

Then the collection of lints {t i1 . . .U,} forms a permutation of all the lines of the
geomeay.

2. Letu i , i= l . . . n h t e t h a l i n e s

vi (qi,ri)

Tkn the dect ionof lines { q . . . U,} forms a permutation of all the lines of the geometry.

3. Letwi,i= l...ndenotetheUnes

wi = (ri,Pi)

Then the collection of lines {w1 . . . wn} forms a permutation of all the lines of the
g-mcay.

4. L e t h i , i = l ... ndcnotctheplancs

hi = @t,qi,ri)

Then the collection of planes {hl . . . h,} forms a permutation of all the planes of the
geometry.

The table below depicts a perfect sccc8s p a " for the 4-dimensional geometry. 1 n

When an optration having (pi, qi, ri) as the associated index triplet is performed, the three
memorymodulcsrccegPcd~~tothetbreeLiness,u;,wi,andthcproccssorperforming
the operation corrtspollds to the plane hi. Hemx it is clear that if we scbadulc n operations
whose associated tripla form a purcct pattern to exccute in paraUcl. then

1. thm am no rcad or write conflicts inmemoly 8ca88cs

2. there is no conflict in theusa of proctJsors

3. alltheprocsssorsanfullyutilized

4. the memory bandwidth is fully utilized

Ham the name pe#ecz purrern.
S i there is a conmcu 'on between a memory module M and a processor P iff the line a

co- to M is contained inthe plane P cOnzspOndingto P. we can denote a m " 'on
by the ordered pair (a, p). Let C be the collection of all pnrccssor-memory connections:

C = {(a,P)la E &,P E %,a G P)

68 International Conference on Application Specific Array Processors

Then, if (p ; , qi, r ;) is a triplet in a perfect pattem P, U;. w;, w; are the corresponding lines, and
hi is the corresponding plane, we say the perfect pattem P exercises the connections (U, , a),

A sequence of perfect pattems is called aperfect sequence if each connection in C is exercised
the same number of times collectively by the pattems in the sequence. It follows that if such
perfect sequences form the basis for instructions executed on the architecture, it leads to a
uniform utilization of even the wires connecting processors and memories. It is then possible
to connnect the processors and memories so that the number of wires in the system only grows
linearly with the number of processors. A definition of perfect pattems for 2-dimensional
geometries, and a discussion on how to generate perfect patterns based on automorphisms of the
underlying groups, appears in [KAR 911.

(vi, hi) and (w; , hi).

2.6 Instructions for the system and its elements

There is a 3-level hierarchy of instructions in the system. At the lowest level, an elementary
instruction is an instruction that each individual hardware element follows - for a processor
this is an add, multiply, no-op etc.; for a memory module it consists of an address and a
redwri te flag; for a switch element in the interconnection network it is a pattern that encodes
its configuration in a given cycle.

At the next level, a system-level instruction is a conflict-free collection of elementary
instructions - one for each element of the system, grouped together on the basis of a perfect
pattem. Thus a system-level instruction specifies the operation of the system as a whole. A
Perfect Sequence of system instructions (PS-Instruction) is a list of system instructions based on
a perfect sequence of the geomeuy.

At the top level, a collection of third-level instructions, each consisting of a list of system-
instructions, implement a high-level operator acting on a large data structure e.g, a vector, a
matrix, linked list etc. Unlike the other two levels, this level of instructions is not hard-wired
and can be changed by loading different instructions into special instruction sequence memories
(see below). The machine can be specialized for a new application by designing, compiling
and loading a new third-level instruction set suitable for that application. These third-level
instructions are designed to exploit massive pardelism at a fine-grain level, using the structure
of the geomeuy. The main program runs on the host, and passes control to the accelerator
whenever it encounters a third-level instruction.

A compiler running on the host or another machine (see [DKR 911) takes a data-flow graph
of a third-level instruction as input, and uses its knowledge of perfect pattems and sequences to
produce as output a collection of programs, one for each element of the system. Each program
consists of a list of elementary instructions for the associated element. Each hardware element
has an associated local instruction sequence memory for storing the instruction sequence to be
used by that element. The initial loading of these instruction sequences is done at the start
of each new subroutine by the host. Once loaded, the instruction sequence may typically
get executed many times before being overwritten by the instruction sequence for some other
subroutine. Depending on the size of these instruction memories, instruction sequences for
several subroutines can reside simultaneously in these memories.

2.7 Memory system

The memory system of the accelerator is partitioned into n, modules M I . . . M,,, . The set
of words that can be accessed in a single machine cycle must be based on a perfect pattern.
Thus the type of memory access possible is between the two extremes of random and sequential
access, and could be called “structured” access. The total set of allowed combinations is still

powerful enough so that a sequence of such 8cce8ses is as effective as random access. On the
otherhand. suchasnuctund access memory has abandwidthmuchhigherthanarandom access
memory implemented using comparable technology.

2.8 Processingelements

The pnw;essing elements in the accelerator are pipelined arithmetic and logic units. The
instruction sequence to be followed by a processor can also contain move(iJ) instructions
which move optrands from memoq module Mi to Mj. as well as “no-ojd’. In the case of
operationsthattake sevdmachinecycles toproduce a d t , “excc;ution” ofthe corresponding
iostnrdion means initiation of the operation. The compiler must e” that the pipeline delay
in availabiity of the result is taka into scco~m when the data-flow graph is processed. The
instruction seq- to be followed by a p ” r is stored in its local instludion memory.
This instructiOnsequence does not contain addresses of operaads. but onlythe type of operation
to be performed (iiuding moves and no-ops). There is no concept of “fetcbhg‘’ an opcrand
- instcad the processor simply operates on whatever optrands are available at its input ports
at the start of each machint cycle. There is also a local data memory assuciated with each
processoruseda,storedrsaopcrrmdsusedonlybythatproccsoor,thusnducingtrafficonthe
i n ” m ‘onnetwork. For hstana .inanapplication~asmultiplicationofa~parsematrix
by a vector, the matrix dements can be stand in the local mtmorics of processors, and the input
and output vectors can be stored in the shared. partitioned global memory.

2.9 Application example

The paper by Kannarkar [KAR 911 illusmated some of the key futtures of the architectwe
by describing how to map some commonly used operations in scientific computation (viz.,
multiplication of a vector by a sparse matrix, and the pivoting step in Gaussian elimination)
onto the architecture. In this paper, we look at another application viz., the join of two binary
relations in a relational -. As illustmtcd below. this application has a propcrty simiiar to
the Gaussian e l i m i o n example, which can be exploited to obtain tine-grain parallelism on
this alchitecture.

Consider two binary relations R and S. Let t and s be tuples in R and S respactively. We
denote the components of t by (r[l], r[2]). A computation of the natural join of dations R and
S. denoted by R S, bhgs together tuples t and s only if they match on the join attribute.
Thus (r[l], r[2]) and (s[l], 421) must have at least one dement in common. This property can
be exploited as follows:

1. For each tuple t in R, map each of its components to a point in the projective space by
meansofsomehashfunctionsfi,fi

a = fi(t[ll) ,P = f2(r[21) a,P E Qo

We associate each tuple with the linc determined by (a, P). I f a # P. this line is unique.
Ifa = P,wecanassociatethetuplewithauylincpassingthroughpointa. Dothesame
for the tuples in S.

2. Define au architecture in which memoxy modules are in one-toone comspondencc with
onedimensional subspaces i.e.. lines. and p ” r s are in one-to-one comspondenct
with two-dimensional subpaces is.. planes. Note that the memory system of the
architbcture would typically be a colltction of disks, and each memory module would be
a disk.

IO International Conference on Application Specific Array Processors

3. Then, for each tuple in R (and S), assign it to the memory module (i.e., the disk)
corresponding to the line associated with the tuple. With this assignment, each relation is
distributed across the disks in the system, and not stored on a single disk, as would be case
in a straightforward implementation. The portion that is stored on each disk is determined
according to the rules described here.

4. Consider tuples T E R, a E S. Let the pair of points associated with the attributes of
tuple r be (e T , P r) , and the pair of points associated with tuple a be (as, Pa). From the
discussion above, tuples T and a are brought together only if d i m (a , , P r r a S , p s) 5 3
(since the tuples must match of the join attribute and so either CY, = as, or pT = Ps). In
general, d i m (a , , p,, as, ps) = 3, and so the tuples T and s determine a plane, say 6, in
the projective space. Then the task of bringing tuples T and s during computation of the
join is assigned to the processor corresponding to the plane 6. Since the lines (CY, , pr) and
(as, P S) lie on the plane 6, the processor has connections to the memory modules where T

and s are stored.

5. Recall that, for a symmetric architecture, d, the dimension of the projective space, is given
by d , + d p + 1, where d,, d , are the dimensions of the subspaces corresponding to the
memory modules and processors respectively. Thus, if we are interested in having an
equal number of processors and memory modules, we would choose a four-dimensional
geometry i.e., d = 1 + 2 + 1 = 4.

Note that the fundamental property exploited here is that two tuples are brought together
during join computation only if they match on the value of at least one component. The scheme
we have outlined above is applicable to other computations which have this property e.g., the
pivoting step in Gaussian elimination, and computing the transitive closure of a directed graph.

3 Some system design issues

After examining various tradeoffs, we partitioned the system into building blocks. These are
the processing elements (PES) and the memory modules (MMs) shown in Fig 2. The switch is
not a separate element, but is distributed across the system, and appears as part of these building
blocks. These blocks could be combined on a single chip, or implemented as separate chips. The
architecture allows simple designs for the memory modules and the processing elements. For
instance, a processor can be a simple pipelined ALU, while the memory can be fully pipelined.
The ALU instruction memory stores the instruction sequence for the ALU and its associated
local data memory. The sequence of addresses for the data memory is stored in its associated
sequencing unit. Since this sequence is known in advance, full pipelining is possible in decoding
addresses, accessing bits in memory and, in case DRAMS are used, in dynamic error detection
and correction. We present a design for a pipelined SRAM with a cycle time of 5ns in 34.1.
The sequence memory for each distributed switch element contains a list of control words that
determine its configuration during each cycle.

As discussed in 52.5, instructions based on perfect sequences ensure that each processor
memory connection is exercised the same number of times. We exploit this property by
grouping several machine cycles together in “frames” corresponding to the length of a perfect
sequence. Data is sent over all connections simultaneously, with the data movement required
for the computation in the current frame being completed in the preceding frame. This
approach requires connections of reduced width. Consequently, overall system design can be
quite compact. To illustrate this point, consider the problem of interconnecting a symmetric
architecture based on a 4-dimensional geometry and having 155 processors and 155 memory

Parallel Architectun I1

LOCAL
DATA -

MEMORY

PROCESSING ELEMENT

MEMORY UNIT

f

MEMORY MODULE

Figure 2: Building Blocks of the System

12 International Conference on Application Specific Array Processors

modules. Given the connections between processors and memories, we can, for a given
arrangement of these elements, estimate the maximum wiring density on the board. We do

C W I N G PLANE

v 3 V30 MULTI-LAYER
PCB

.

. . .
- - H3

. . .
-

..
PROCESSOW
MEMORY MODULES -

-
V1’ V2‘ V3’ V30’

Flgure 3: Arrangement of elements for wiring density estimates

this by counting the total number of wires crossing each of the cutting planes shown in Fig 3.
The wire count for the horizontal cut H; - H: is the total number of wires crossing the plane
H ; - HI in the figure. Similarly for wire counts of vertical cuts Vi - V,’. By using an interior
point method, we showed that the lower bound on the number of wires crossing the central cuts
(V15, V16&H2, H 3) was 940. By using another interior point method for finding optimal cuts
in a graph, we found a solution with 1036 wires crossing the central cuts. Even for a simple
scheme shown in which the elements were laid out in a natural 5 x 31 arrangement based on
the group theoretic structure of the geometry, results showed that the maximum wire count,
across the central cut, is 1488 wires, which is within a factor of two of the lower bound (see
Fig 4). (Here we have assumed that each processor-memory connection has 4 wires.) The results
imply a required cumulative wiring density of 100 wires/inch for all the layers on a 15” x 15”
printed circuit boardPCB), which can be easily achieved on available multilayer PCBs. For a
synchronous parallel machine, such a single board design is preferable, because clocking and
routing are considerably simpler, and higher speeds are possible. The fact that the number
of wires in the system grows only linearly with the number of elements also means that we
can afford to have dedicated point-to-point unidirectional connections between processors and
memories, rather than connect them using a network based on shared buses. The advantage of
having point-to-point connections is that each wire in a link can be constructed as a transmission
line with a controlled termination impedance, and high bit rates are possible. In 34.3 we discuss
a design for a high speed U0 buffer done entirely in silicon which could be used for such a high
speed interconnection.

VERTICAL CHANNEL DENSITY DISTRIBUTION

Wlre Count

HORIZONTAL CHANNEL DENSITY DISTRIBUTION

Figure 4: Wiring density estlmate muits

4

4.1 Pipelined SRAM design

Pipelining memories has aaditionaUy been difficult bezause the sequence of addresses that
will be generated by a processor is not known a priori. S i address sequences for memories
in this architccaue an known before computation is initiated, pipelining is possible, and cycle
times canbe cxmsidcrably xeduad. We have designed apipelined SRAM that dacodes addnsses
in a hierarchical fashion, employing latchts in decoding and redwrite stages lo achieve high
throughput ratcs. Most of these ideas will be applicable in the case of DRAM design also.
ADVICE [LWN 801 simulations for a 4 Kbit test memoq in 0 . 9 ~ CMOS with extracted
parasitics ate shown in Fig 5. In the figure, CLK is the clock. EQV is a pulse that egualizes
the bitlines. WL is the word line pulse. and D and DN an the complementary outputs of the
sense amplii5er. The simulations plbdict a 5 ns cycle time under worst-case conditions, and thus
indicate such a pipelined SRAM could m e t the bandwidth nquixements of a processor.

Design of some key elements

4.2 P”rdeS ign

S i the processor does not fetch operands, but simply operates on the two operands that
arc available at its input ports at the beginning of each cycle, it can be a simple floating point
arithmetic and logic unit. A critical section of a floating point unit is the multiplier. so we have
c o e on the design of a fast pipelined multiplier, which we dimss next.
Binary multiplication in most floating point processors is implemented in two stages viz.

generation of the partial products. and addition of these p h a l products. For multiplication of

14 International Conference on Application Specific Array Processors

;:

3.0- :

!

4.0- I
!I
9 3.5-

2.5-

2.0-

1.5-

1 .o- i

I '
I !
I !
I !
a !

I n

I !
I !
I !
' !
a i

I I

I !

I+ a -

I I

;i

CLK
EQU
WL
DN

- 0 . 5 f , , . . , . I , . . . I
1 6 1 8 20 22 24 A6

Time in ns

Figure 5: Simulation results for pipelined SRAM

large numbers, most of the time is spent in this addition of partial products. Several methods
have been used in the past, of which Wallace tree. structures [WAL 641 using Carry Save Adders
(CSAs) as the basic building blocks have been the most common. Each CSA takes 3 inputs (two
operands & a carry-in) and produces 2 outputs (a sum & a carry-out), so the number of stages in
the Wallace tree for addition of n partial products is [logl.s(n)l . Other reduction schemes have
been proposed, using building blocks called counters [SOM 911. A (p,q) counter has p inputs
and q outputs, and the number of stages in the Wallace tree for the addition of n partial products
is [log,,,(n)l. While counters reduce the routing complexity of the Wallace tree by reducing
the number of stages, building high speed monolithic high order (many input) counters has been
a challenging task, because speeds of CMOS circuits reduce as the number of inputs increases.

We have avoided the use of high fan-in CMOS circuit by employing a different scheme for
representing the partial products. The design we describe employs a novel adder unit which
takes in four2-bit operands, and produces two 2-bit results. In a certain sense, one could think of
this multiplier as operating in base 4. As shown in Fig 6, each adder unit takes four inputs (each

ADDER 4 4 CARRY SUM

Figure 6: 4-input adder

Pwalkl Architcctvrc 15

a base 4 digit), and produces a sum and a carry (each a base 4 digit). Thus the adder reduces the
number of partial products by a factor of 2 in every stage, and the depth of the tne for addition
of n partial products is p q Z (.)I. For single pmision floating point arithmetic. 5 adder stages
would be needed for multiplication of mantissas. Each digit is npmentui in a fully decoded

b I a 0

ADDER

UNIT

ADDER

UNIT - I--
ADDER

ro - .*a h CNCODINO

BUM
DlOlT

CARRY
Diam

Flgure 7: Structure of a blnput adder

form using 4 wircs. exactly one of which may be active. The structure of the adder is shown
inFlg 7. Two 4 x 4 adder units add apairof input digits, each producing a sum in base 7. A
7 x 7 adder unit then adds thcsc two intemediate sums, and the rcsulting sum is Feencodcd as a
pair of base 4 digits by the eflooder unit shown. Each 4 x 4 adder unit is implemeaued with an
anay of pass transistors as shown in Fig 8. A similar scheme is used for the 7 x 7 adder unit.
We have used transistors with low threshold voltages to ensue that the outputs of the 7 x 7
adder unit (which (uc ~ V T below VDD, whew VT is bre threshold voltage) an stil l large enough
to drive the gates which d e the output. "here (uc many ways of combining the adders
to form a single pipeline stage. In OUT design, m have c o m b d four adder units to form a
single pipeline stage, as shown in Fig 9. Results of ADVICE simulations of the circuit with
extracted parasitics indicate that the delay for a single adder is lcss than 211s. and the delay for
the pipeline stage formed from 4 adders is less than 10ns (under worst case conditions). These
results are plottcd in Fig 9. when D is one of the inputsto the first adder inthe chain, Y & 2
a intermediate outputs of its 4 x 4 units. and S is an output of its 7 x 7 unit. SUM is an output
of the cecodcr aftcr rhe fourth adder in the chain. Thcsc nsulrs indicate that the multiplier could
work at 100 MHz. and could be used withthe pipclincd SRAM described in $4.1. Designs for
the partial product generation unit, the final carry lookahtad adder, nomalization circuit and
exponent adder will be pnsented in a subsequent paper.

76 International Conference on Application Specific Array Processors

ZO

Z l

22

24
- -_

Figure 8: 4 X 4 Adder Unit

I I 4.5 , , , , , . , . , . . , , , , . , . . . , I l t B 10

Time inns

Figure 9: Simulation results for a chain of four adders

4.3 SwitchDesign

As mentioned in $3. the switch is not a separate element, but is distributed across the system.
With each processing and memory element, them? is an associated distributed switch element.
’Ibis element consists of a multiplexer, a demultiplexex, and circuitry for bit serialization and
synchronization of incoming data with system clock. We discuss here the switch design for

PARALLELTOSERIAL.
CONVBRSION CIRCUITRY

REGISTERS -
I-

=-E*- -
d , LE;+j-- LOAD ENABLE

HI HS-
DRIVERS

TO
LOCAL.

ELEMJmT

1
SERlAL TO PARALIBL CONVERSION

TRISTATABLE AND SYNCHRONIZATION CIRCUITRY
BUFFERS

\ 64

Figure 1 0 Distributed Switch Elements

a symmetric architecture having 57 ~KN.%SSO~S (and 57 memories). In this architecture, each
processor (memory) is ~ ~ ~ e ~ t e d to eight memories (processors). Recall that instructions based
on perfect sequences ensure that each processor-memory connection is exercised the same
number of times. If the perfect sequences are designed so that each connection is exercised
exactly once, then each perfect sequence will consist of 8 perfect patterns. ’Ihus each frame (§3)
will comprise of 8 machine cycles. Since data being sent in the current frame will be used only
in the next frame, each port can be accessed in a cyclic manner. ’Lhus each port is accessed
every eighth cycle and data can be time multiplexed over eight cycles. So, for instance. if data
words were 64 bits wide, each port could be only 8 bits wide. Fig 10 shows the design for a
distributed switch element. Since the buffer are accessed cyclically, the control needed for the
switch is simple, and counters can be used instead of a switch sequence memory. The frame
select signal at the receiving end selects the set of buffers which have been filled in the preceding

I8 International Conference on Application Specific Array Processors

frame. The synchronization circuitry at each receiving port recovers the transmission clock and
synchronizes the received data with the local system clock. The number of wires per connection
can be further reduced if high speed bit serial links are used. In the above example for instance,
if a 400 Mbit/s point-to-point link were used, then two links per port would meet the bandwidth
requirements of processors and memories operating at 100 MHz. If each link used a differential
pair of wires, the number of wires per element would be 16, resulting in considerable reduction
in the wiring.

!

Figure 11: Transmitter Design

We have been experimenting with designs of various high-speed transmission and receiving
circuits. A primary consideration in transmitter-receiver design is the reduction of power
dissipation. This has prompted us to use very low voltage swings for data transmission. Figs 11
and 12 present circuit designs for a transmitter and receiver which use 200 mV signal swings.
Low voltage swings also generate less noise. At the receiving end the signal is directly coupled
into the source terminal of the NETS. The PET-NFET pair is biased at its trip point by
another identical pair resulting in a high amplification. This receiver is susceptible to transistor
mismatches, and so special care was taken in the layout of the circuit. The pull down NFET
to ground also serves as a matchmg termination resistance for the transmission line. The gate
voltage of this device is controlled by an opamp to track temperature and process variations and
provide an accurate termination impedance under all conditions. At the transmitting side, the
driving P E T is sized so that the voltage presented on the line is 200 mV peak to peak. The
gate voltage of this PFET is also controlled by an opamp and is adaptively varied to maintain
the same voltage swing under various operating conditions. Simulation results of the circuit
with associated parasitics extracted from the layout shown in Fig 13 indicate that the circuit can
operate at 500 MbiiYs under worst case conditions.

5 Future Work

We are looking into other receiver and transmitter topologies with the aim of reducing the
power dissipation, and mismatch sensitivity. The results of these investigations, and designs
for the remaining sections of the multiplier and the floating point adder, will be presented in a

P d k l Architecture 79

Figure 12: Receiver Design

- 2 2

D

Tlmo In nr

Figure 13: Simulation results for the receiver circuit

80 International Conference on Application Specific Array Processors

subsequent paper. Other issues such as clock synchronization, heat dissipation, design of the
interface to the host, will also be addressed in subsequent papers.
Acknowledgements. We thank J o e Condon, T h a d Gabara, T . R . V i s w a n a t h a n , J . Fischer,King
T a i . and A . J . Raina l for helpful discussions.

References
[DKR 911 I. S . Dhillon, N. K. Karmarkar. K. G. Ramakrishnan.An Overview Ofrhe Compilation Processfora New

Parallel Archifecfure, Proceedings of the Fifth Canadian Supercomputing Conference, N.B.. Canada, Jun
1991

[KAR 911 N. K. Karmarkar, A New Parallel Architecture for Sparse mafrir Computation basedon Finife Projecrive
Geometries, Proceedings of Supercomputing ‘9 1

Texas, Apr 1980
ILWN 801 L. W. Nagel. ADVICEfor Circuit Simulations. Proc. Intl. Symp. on Circuits and Systems, Houston,

[SOM 911 Paul J. Song, Giovanni De Micheli. Circuif and Archirecfure Trade-ofsfor High-speedMulriplicarion,
IEEE JSSC, Vol. 26, No. 9. Sep 1991

[WAL 641 C. S. Wallace, A suggestionfor afasf multiplier, IEEE Trans. On Electronic Computers, Vol. EC-13, Feb
1964

