
Under consideration for publication in Formal Aspects of Computing

Maximally Concurrent Programs 1

Rajeev Joshia and Jayadev Misrab

aCompaq Systems Research Center, Palo Alto, CA
bThe University of Texas, Austin, TX

Keywords: Concurrent Program Design, Safety, Progress, Maximal Solution

Abstract. Typically, program design involves constructing a program P that
implements a given specification S; that is, the set P of executions of P is a subset
of the set S of executions satisfying S. In many cases, we seek a program P that
not only implements S, but for which P = S. Then, every execution satisfying
the specification is a possible execution of the program; we then call P maximal
for the specification S. We argue that maximality is an important criterion in the
context of designing concurrent programs because it disallows implementations
that do not exhibit enough concurrency. In addition, a maximal solution can
serve as a basis for deriving a variety of implementations, each appropriate for
execution on a specific computing platform.

This paper also describes a method for proving the maximality of a program
with respect to a given specification. Even though we prove facts about possible
executions of programs, there is no need to appeal to branching time logics; we
employ a fragment of linear temporal logic for our proofs. The method results in
concise proofs of maximality for several non-trivial examples. The method may
also serve as a guide in constructing maximal programs.

1. Introduction

Traditionally, a program specification is given by safety and progress properties.
A safety property – of the form that no two neighbors eat simultaneously in
a dining philosophers solution – is used to exclude certain undesirable execu-
tion sequences. A specification with safety properties alone can be implemented
by a program that does nothing; then, the safety constraints have been imple-
mented by excluding all non-trivial executions. Therefore, it is necessary to spec-
ify progress properties – of the form that some hungry philosopher eats eventually

1 Partially supported by the NSF grant CCR–9803842

2 R. Joshi and J. Misra

– requiring that some execution sequences be included. Safety and progress re-
quirements are sufficient for specifying non-trivial sequential programming tasks,
but they are not sufficient for concurrent program design because, for instance, in
the case of the dining philosophers, the solution may allow only one philosopher
to eat at a time, thus eliminating all concurrency. We propose a new require-
ment, called maximality, to ensure that only the most concurrent executions are
included. Thus, the sequential solution to the dining philosophers problem will
be unacceptable as a solution since it does not meet the maximality requirement.

Program design, typically, involves constructing a program P that implements
a given specification S; that is, the set P of executions of P is a subset of the
set S of executions satisfying S. For instance, given a specification to generate
an infinite sequence of natural numbers, any program that generates a sequence
of zeroes implements the specification. So does the program that generates the
natural numbers in order. In many cases, we seek a program P that not only
implements S – i.e., P ⊆ S – but for which P = S. Then every execution
satisfying the specification S is a possible execution of P ; we call P maximal
for specification S. For instance, the program that generates a stream of zeroes
is not maximal for the specification to generate an infinite sequence of natural
numbers; nor is the solution that allows a single philosopher to eat at a time
maximal for the dining philosophers problem.

There are at least three reasons why we are interested in maximal solutions.
First, as we have remarked above, we exploit maximality to eliminate those un-
desirable solutions for a given specification that restrict concurrency. (Since a
maximal solution admits maximal concurrency, it suffers from no such restric-
tion.)

Second, we often simulate an artifact by a program and the latter has to
simulate all behaviors of the former; in this case, the simulation program has to
be maximal for the specification of the artifact. Such constructions are common in
certain verification methods, such as model-checking. For instance, consider the
problem of proving the correctness of a protocol for communication over a faulty
channel (e.g., the Alternating Bit Protocol). A typical approach to showing the
correctness of this protocol is to show that the programs describing the sender
and receiver satisfy certain properties when composed with a program describing
the faulty channel. For such a proof, we clearly require that the program used
for the faulty channel be maximal for its specification.

The third reason for designing a maximal solution is that we often develop
(and prove correct) such a solution, and then refine it – by eliminating some non-
determinism, for instance – to obtain a program that is actually implemented.
This strategy may be easier than developing the implemented program directly.
A single maximal program for a problem may be the basis for a family of inter-
related programs, each of which may be appropriate for a different computing
platform. We show several refinements of a maximal solution for task scheduling
in section 5.5.

A maximal solution is, typically, non-deterministic; in many cases the non-
determinism is unbounded.

Overview of the paper In this paper, we suggest a method for proving the
maximality of a program with respect to a given specification. Given a program
P to be proven maximal, we have to show that any sequence of states, σ, meet-
ing the specification is a possible output of the program. We first construct a
constrained program, P ′, from P and σ; the constrained program retains the

Maximally Concurrent Programs 3

structure of P , but its actions are restricted by guards and augmented by as-
signments to certain auxiliary variables. Next, we show that all fair executions
of P ′ produce σ and that any such execution corresponds to a fair execution of
P ; hence, σ is a possible output of P .

Even though we prove facts about possible executions of programs there
is no need to appeal to branching time logics; we employ a fragment of linear
temporal logic for our proofs. The method seems to be quite effective in practice,
resulting in concise proofs for non-trivial examples such as fair unordered channel
of section 4.2 and task scheduler of section 5. The proposed method may also
serve as a guide in constructing maximal programs from specifications.

2. Programs and their Specifications

2.1. Programming Model

We adopt a programming model based on UNITY [CM88]. A program has a set
of variables that define its state, an initial condition which is a predicate over
program states, and a nonempty set of actions, where each action is a relation
over program states.

A program execution is an infinite sequence of the form τ0A0τ1...τiAiτi+1..
where each τi is a program state and Ai is an action; τ0 satisfies the initial
condition and, for all i, (τi, τi+1) ∈ Ai. In addition, each execution satisfies the
following fairness requirement: each action appears infinitely often.

We employ the following notation to describe the programming examples
in this paper. The initial condition is defined in an initially section where the
initial values of some of the variables are declared; the uninitialized variables have
arbitrary initial values. The program actions are written as guarded commands,
preceded optionally by a label, as in

α :: g → s .
Execution of α has no effect in a state if g does not hold in that state; otherwise
s is executed. We assume that execution of s terminates from any state where g
is defined.

As an example, consider the following program having two integer variables
x, n.

Program FairNatural
var x, n: integer
initially n = 0
α:: n := n + 1
β:: x, n := n, 0

end {FairNatural}

We claim that x is assigned only natural numbers as values, and x is infinitely
often positive. We prove these claims in the section 2.2. We show in section 3.4
that any sequence of states satisfying these two properties is the result of some
execution of this program. Thus, this program is maximal for the specification
that requires generation of an infinite sequence of natural numbers where, even-
tually, a positive number is generated. 2

2

2 Consequently, this program can assign arbitrary natural numbers to x, i.e., it has unbounded
non-determinism.

4 R. Joshi and J. Misra

Stuttering Each program contains skip as an action; this action will not be
shown explicitly in the program. The effect of executing skip is to leave the
program state unchanged; thus, the state is repeated in an execution. Note that,
because of the fairness requirement on actions, there are at most finitely many
consecutive occurrences of skip in any execution. (However, a program state may
repeat forever; this happens when execution reaches a state in which no program
action changes the state.) This use of stuttering in the context of refinement is
due to Lamport [Lam83].

Interaction with an Environment An environment that interacts with the
program FairNatural will, typically, “call” β to receive the next value of x. The
programming model in this paper does not support procedure calls. A more
general model, such as Seuss [Mis96], would allow β to be called as a procedure.
Then, the output of the program is the sequence of values of x returned to
the caller. In our current model, however, we can encode the interaction with
the environment as follows: introduce a counter c that records the number of
executions of (i.e., calls upon) β; that is, the action β increments c. A possible
output sequence of this program is a sequence of states (c0, x0), ..., (ci, xi), ..,
where ci = i + 1. The goal of maximality is to show that any such sequence is a
possible output of this program.

2.2. Specifications

A specification is a set of program properties. We use the following opera-
tors of UNITY to specify the properties; see appendix A for a short summary
and [Mis95a, Mis95b] for details. In the following, p, q are predicates over the
program states and s is quantified over the actions of the program.

2.2.1. Safety

Safety properties are expressed using co and its derivatives. Property p co q
holds for a program if in every execution a state in which p holds is followed
immediately by a state in which q holds. (See section 3 for a formal definition.)
A program has the property stable p if p continues to hold once it becomes true,
and invariant p holds in a program if p is always true. See the appendix for
details.

Note: If p co q holds for a program 3, then p ⇒ q. To see this, recall that every
program contains skip as an action. Since executing skip from a p-state results
in a p-state, if the program satisfies p co q, it follows that p ⇒ q.

2.2.2. Progress

The elementary progress operator, en, or ensures, has the following informal
meaning. If p holds at any point in the computation it will continue to hold as
long as q does not hold, and eventually q holds. Further, there is one (atomic)

3 To be precise, this implication holds only over the “reachable” states of the program. But
that is a technicality that we will not be concerned with in this paper.

Maximally Concurrent Programs 5

action which is guaranteed to establish q starting in any p-state; see the appendix
for a formal definition.

Progress properties are described using the relation 7→ (leads-to): p 7→ q
means that any state in which p holds is eventually followed by a state in which
q holds. This operator is defined inductively, as shown in the appendix.

Proofs in this paper appeal to a number of derived rules that are given
in [Mis95a, Mis95b]; see [APP93, Pau99] for mechanical proofs of some of these
rules.

Example: Program FairNatural of section 2.1 has the following properties.

stable x ≥ 0, i.e., once x is nonnegative, it stays nonnegative
true 7→ x > 0, i.e., if true holds now, eventually x becomes positive

Note that since true holds for every state, the leads-to property above is
equivalent to saying that x is positive infinitely often.

To prove that stable x ≥ 0 is a property, we have to show that both actions α
and β preserve x ≥ 0; this follows from the program text. The progress property
may be proven as follows. First, show that invariant n ≥ 0. Then,

true en n > 0 , program text, and invariant n ≥ 0
true 7→ n > 0 , basis rule (1)
n > 0 en x > 0 , program text
n > 0 7→ x > 0 , basis rule
true 7→ x > 0 , transitivity on (1) and the above

3. Maximality

Given a program P and a specification S it is possible to show that P satisfies
S (i.e., P meets all the properties in S) using the UNITY logic [Mis95b, Mis95a]
(as outlined in section 2.2). To prove maximality, we show that any sequence that
satisfies S may be obtained from an execution of P , in the sense described below.
First, we define what it means for an infinite sequence σ of states to satisfy S.
A sequence σ satisfies S if it satisfies each property in S, as described below.
We consider only the following types of properties in S: initially p, p co q and
p 7→ q. In the following description, σi denotes element i of σ (with σ0 denoting
the first element), and p(σi) means that p holds in the state σi.

σ satisfies initially p means p(σ0) holds.
σ satisfies p co q means (∀ i :: p(σi) ⇒ q(σi+1)).
σ satisfies p 7→ q means (∀ i :: (∃ j : i ≤ j : p(σi) ⇒ q(σj))).

Given an execution τ of a program, and a subset V of the set of program
variables, the “projection of τ over V ” is the (infinite) sequence of states obtained
by removing the action labels from τ , and projecting the resulting sequence of
states to the set V .

For any execution τ , subset V of program variables, and sequence σ of states
over V , we say that “τ reduces to σ over V ” provided the projection of τ over
V is equivalent to σ upto finite stuttering [Lam83].

For example, in the program FairNatural , the fragment of the execution se-
quence (1, 0)α(1, 1)α(1, 2)β(2, 0)α(2, 1)β(1, 0) – where each state is a pair of val-
ues, of the form (x, n) – reduces to the fragment 121, and also to 1121, over the
set of variables {x}.

6 R. Joshi and J. Misra

Definition. Program P is maximal for specification S and variable set V pro-
vided P satisfies S and for any sequence σ satisfying S there is an execution τ
of P such that τ reduces to σ over V .

To keep the notation simple, we will henceforth assume that V is understood
in the specification, and we will write “P is maximal for specification S”.

3.1. Constrained Program

We next describe a method to prove maximality of a program P for a specification
S. Let σ be a sequence of states that satisfies S; we have to show that some
execution of P reduces to σ. Our strategy is to construct a constrained program
P ′ such that all executions of P ′ reduce to σ, and all executions of P ′ correspond
to fair executions of P , in the sense defined later.

The constrained program P ′ is constructed from P as follows.

1. The variables of P are retained in P ′; they are called the original variables.

2. New constants, called chronicles, are introduced in P ′. Chronicles are like
history variables: they encode the given state sequence σ. They are not altered
in the constrained program; their values are only read. There may be several
chronicles, one corresponding to each variable of the specification, to encode
the sequence of values taken on by the variables during a computation.

3. Additional variables, called auxiliary variables, are introduced in P ′. Auxil-
iary variables are used in the proof. In our examples, we use a special aux-
iliary variable, which we call a point, to show the position in the chronicle
that matches the current state of P ′.

4. An action α of P is modified to
α′ :: g → α ; β

where g is a guard that may name any variable of P ′, and β, which is optional,
may assign only to the auxiliary variables. Action α′ is an augmented action
corresponding to α and g is the augmenting guard of α′. Augmenting an
action may eliminate some of the executions of P .
Note: If α has a guard h then, effectively, α′ has guard g ∧ h.

5. Constrained program P ′ may also include additional actions of the form
g → β where g names any variable of P ′ and β assigns only to the auxiliary
variables.

6. The initial condition of P ′ implies the initial condition of P .

Note that in P ′, chronicles remain unchanged during execution, since they
appear only in guards and other tests. Auxiliary variables appear only in guards
(and other tests) and in assignments to themselves. Original variables of P are
assigned values exactly as they were assigned in P , except that some of the
variables that were uninitialized in P may be initialized in P ′.

Example Consider the program FairNatural of section 2.1. To prove its maxi-
mality for the specification

stable x ≥ 0,
true 7→ x > 0

choose an arbitrary sequence X that satisfies the specification, i.e.:

Maximally Concurrent Programs 7

(∀ i :: Xi ≥ 0 ⇒ Xi+1 ≥ 0), and
(∀ i :: (∃ j : i ≤ j : Xj > 0)).

Now, construct a constrained version FairNatural ′ of the program, by in-
cluding the chronicle X and an auxiliary variable j denoting the point. The
augmented actions corresponding to α and β are α′ and β′. There are no super-
posed actions.

Program FairNatural ′

var x, n: integer; X : sequence of integer; j: integer
initially n = 0 ∧ x = X0 ∧ j = 1
α′:: n < Xj → n := n + 1
β′:: n = Xj → x, n := n, 0; j := j + 1

end {FairNatural ′}

We claim that in every fair execution of FairNatural ′ the sequence of values
assigned to x is X , i.e., invariant j > 0 ∧ x = Xj−1. We also show that every
fair execution of FairNatural ′ corresponds to a fair execution of FairNatural .
Hence, X is the outcome of a possible execution of FairNatural .

Remark on the Constrained Program The following example shows that a
constrained program may not be executable.

Consider the following specification: output a sequence of integers where each
element is one more than the preceding element with, possibly, one exception
where the element is one less than the preceding element. Given below is a pro-
gram that is maximal for this specification. The program has an integer variable
x and a boolean b. Neither variable is initialized. If b is true then x only in-
creases, and if b is false then eventually x decreases and then increases forever.
The output is the sequence of values assigned to x.

Program choice
var x: integer; b: boolean
α:: x := x + 1
β:: ¬b → x := x − 1; b := true

end {choice}

To prove maximality given a possible output sequence X , we have to construct
a constrained program in which the initial value of b depends on X . However, no
finite prefix of X can tell us how to initialize b: b has to be set true if and only
if X is an increasing sequence.

initially b = (∀ i : i ≥ 0 : Xi+1 = Xi + 1)

Therefore, the constrained program is not executable.

3.2. Proving Maximality

We describe the proof steps required to establish the maximality of a program
for a given specification. The constrained program inherits all safety properties
of the original program since the assignments to the original variables are not
modified. We have to establish the following facts in the constrained program.

8 R. Joshi and J. Misra

1. Chronicle Correspondence: Show that every fair execution of the constrained
program assigns a sequence of values to the original variables that match the
values in the respective chronicles.

• (Safety) Show that the values of the original variables are identical to
those of the chronicles at the current point (recall that the point is, typi-
cally, given by an auxiliary variable, such as j in FairNatural). This proof
obligation is stated as an invariant of the constrained program.

• (Progress) The current value of the point will be incremented eventually.
(This often follows from the progress proof for execution correspondence.)

2. Execution Correspondence: Show that every fair execution of the constrained
program corresponds to a fair execution of the original program such that
both executions compute the same values in the original variables.

• (Safety) The truth of the augmenting guard of each action is preserved
by all other actions. That is, the augmenting guard of α′ may be falsified
by executing α′ only.
This condition is met trivially if all augmenting guards are pairwise dis-
joint; in this case, each guard is falsifiable only by the action it is associ-
ated with.

• (Progress) Show that each augmenting guard is true infinitely often.

Example For FairNatural ′ our proof obligations are as follows. The detailed
proof is given in section 3.4 below.

1. Chronicle Correspondence:
(Safety) invariant j > 0 ∧ x = Xj−1.
(Progress) j = J 7→ j = J + 1, for any natural J .

2. Execution Correspondence:
(Safety) n < Xj is preserved by β′, and n = Xj is preserved by α′. (These
follow because the guards are disjoint.)
(Progress) true 7→ n < Xj, true 7→ n = Xj .

3.3. Justification for the Proof Rules

The chronicle correspondence rule establishes that the computation of the con-
strained program P ′ matches the given chronicle. The safety requirement guar-
antees the match at the current point and the progress requirement guarantees
that successively longer prefixes of the chronicle will be computed.

Given that the execution correspondence conditions hold, we argue that for
any fair execution τ of P ′, with τ = τ0A0τ1...τiAiτi+1.., there is a fair execution
γ of P , with γ = γ0B0γ1...γiBiγi+1.., such that τ reduces to the sequence of
states γ0γ1...γiγi+1.. over the variables of P .

We modify τ by removing certain actions and states from it, as follows. For
each action Ai in τ that has an augmenting guard g, if g(τi) does not hold then
(τi = τi+1 in this case) remove τiAi from τ . We show that the resulting sequence,
τ ′, is an infinite sequence, and hence, an execution.

From the progress condition of execution correspondence, the augmenting
guard, g, of an augmented action α′ is true infinitely often; from the safety con-
dition of execution correspondence, g remains true as long as α′ is not executed.

Maximally Concurrent Programs 9

Each action α′ is executed infinitely often in a fair execution of P ′. Therefore,
α′ is infinitely often executed in a state where its augmenting guard, g, is true.
Actions whose guards were false at the time of their execution were removed
from τ . Therefore τ ′ contains every augmented action infinitely often, and the
corresponding guard is then true. In a state where the augmenting guard g of
α′ holds, α′ has the same effect on the original variables as the action α that it
corresponds to. (The superposed actions do not modify the original variables.)
Therefore, τ ′ is an execution of the constrained program and it corresponds to
a fair execution, γ, of the original program such that the sequence of states for
the original variables in τ , τ ′ and γ are identical (upto finite stuttering).

Not all computations of the constrained program, P ′, have counterparts in P ,
the original program. In particular, if X is a sequence of zeroes then FairNatural ′

computes X by executing the following sequence of actions, (α′β′)ω ; in this ex-
ecution, α′ has no effect and β′ computes the next value. However, the corre-
sponding sequence, (αβ)ω in FairNatural , does not compute X . The execution
correspondence rule ensures that every fair execution of P ′ corresponds to a fair
execution of P that computes the same sequence of states (in the original vari-
ables of P). In FairNatural ′ the guard of α′, n < Xi, does not hold infinitely
often if X is a sequence of zeroes, and, hence, the execution correspondence rule
does not apply.

3.4. Proof Sketch of Maximality of FairNatural

We state certain properties of FairNatural that are required in the maximality
proof; these properties follow from the program text.

P1. invariant j > 0 ∧ n ≤ Xj ∧ x = Xj−1.
P2. j = J co j = J ∨ (j = J + 1 ∧ n = 0) for all natural J
P3. Xj − n = K + 1 en Xj − n = K for all natural K
P4. n = Xj ∧ j = J en j = J + 1 ∧ n = 0 for all natural J

We also have the following properties of X from the specification of FairNatural .

(∀ i :: Xi ≥ 0 ⇒ Xi+1 ≥ 0), and
(∀ i :: (∃ j : i ≤ j : Xj > 0)).

Property P5 below follows from the properties of X .

P5. There is a function, f , f : naturals → naturals, such that
f(i) > i and Xf(i) > 0, for all i.

Here, f(i) denotes the next position beyond i where Xf(i) is positive. Such a
position exists because (∀ i :: (∃ j : i ≤ j : Xj > 0)).

Next, we show the proofs of chronicle correspondence and execution corre-
spondence.

3.4.1. Proof of chronicle correspondence

1. (Safety) invariant j > 0 ∧ x = Xj−1 follows from P1.

2. (Progress) j = J 7→ j = J + 1, for any natural J :

true 7→ n = Xj , see (2) of section 3.4.2
j = J co j = J ∨ (j = J + 1 ∧ n = 0)

10 R. Joshi and J. Misra

, P2
j = J 7→ (n = Xj ∧ j = J) ∨ (j = J + 1 ∧ n = 0)

, PSP applied to the above two
n = Xj ∧ j = J 7→ j = J + 1 ∧ n = 0

, basis rule of 7→ on P4
j = J 7→ j = J + 1 ∧ n = 0 , cancellation on the above two (*)
j = J 7→ j = J + 1 , weakening the rhs

3.4.2. Proof of execution correspondence

1. (Safety) The guards, n < Xj and n = Xj, are disjoint.

2. (Progress) true 7→ n = Xj:

n ≤ Xj ∧ Xj − n = K 7→ (n ≤ Xj ∧ Xj − n < K) ∨ n = Xj

, basis rule of 7→ on P3
n ≤ Xj 7→ Xj = n , induction
true 7→ n = Xj , substitution axiom with

invariant n ≤ Xj

3. (Progress) true 7→ n < Xj:

j = J 7→ j = f(J) − 1 , induction on (2) of section 3.4.1
j = f(J) − 1 7→ j = f(J) ∧ n = 0
, let J be f(J) − 1 in (*) of section 3.4.1

j = J 7→ j = f(J) ∧ n = 0 , transitivity on the above two
j = J 7→ n < Xj , j = f(J) ⇒ Xj > 0
true 7→ n < Xj , disjunction over all J

4. Random Assignment

A maximal solution is, typically, highly non-deterministic. In our previous ex-
ample, FairNatural , we exploited the non-determinacy of action execution; an
arbitrary natural number is computed because n is incremented an indetermi-
nate number of times. In many cases, it is convenient to have non-determinacy
in the code itself. To this end, we introduce random assignment that, essentially,
assigns a random value to a variable; see section 9.4 of [AO97] for an axiomatic
treatment of random assignment. We show the additional proof steps required
to prove the constrained program when random assignments are replaced by
specific assignments. As an example, we treat a fair unordered channel in which
random assignments are essential in constructing the solution.

4.1. The Form of Random Assignment

A random assignment statement is of the form
x :=?

and execution of this statement assigns a random value of the appropriate type
to x. There is no notion of fairness in this assignment; repeated execution of this
statement may always assign the same value to x.

Random assignment is convenient for programming maximal solutions. How-
ever, it can be simulated using the existing features of our programming model.

Maximally Concurrent Programs 11

For instance, the following program can be used to assign a random natural
number to x. The program is similar to FairNatural ; every execution of γ stores
a random natural number in x. (However, there is no requirement that nonzero
values be produced infinitely often.) The program is also maximal: any sequence
of natural numbers may be assigned to x.

Program RandomNatural
var x, n: integer
initially n = 0
α:: n := n + 1
β:: n > 0 → n := n − 1
γ:: x := n

end {RandomNatural}

4.1.1. Note on the Maximality of RandomNatural

The proof of maximality of RandomNatural is similar to that of FairNatural ;
so, we omit the proof. Note, however, that augmenting α, β, γ by the guards
n < Xj , n > Xj , n = Xj, where X is a given sequence of natural numbers as in
FairNatural , is not sufficient for the proof of maximality. If X is an increasing
sequence, for instance, then n > Xj will never hold, and execution correspon-
dence cannot be proven. Create a constrained program in which the codes of
the augmented actions α′ and β′ are executed at least once following each ex-
ecution of γ′. This can be implemented by having another auxiliary variable c,
c ∈ {0, 1, 2}, with the following meaning: c = 1 if the last executed action is γ′,
and then α′ is executed and c is set to 2; if c = 2 then β′ is executed and c is set
to 0; when c = 0 any of α′, β′, γ′ may be executed. The constrained program is
shown below.

Program RandomNatural ′

var x, n: integer;
X : sequence of integer;
j: integer; c: {0,1,2}

initially n = 0 ∧ x = X0 ∧ c = 0 ∧ j = 1
α′:: (c = 0 ∧ n < Xj) ∨ c = 1 → n := n + 1; if c = 1 then c := 2
β′:: (c = 0 ∧ n > Xj) ∨ c = 2 →

n > 0 → n := n − 1; c := 0
γ′:: c = 0 ∧ n = Xj → x := n; c := 1; j := j + 1

end {RandomNatural ′}

Note: The augmenting guard of β′ implies n > 0, since n > Xj ⇒ n > 0 and it
can be shown that invariant (c = 2 ⇒ n > 0).

4.1.2. General Form of Random Assignment

We use a more general form of random assignment
x :=? st p

where variable x is assigned any value such that predicate p holds after the
assignment. It is the programmer’s responsibility to ensure that this assignment
is feasible. A refinement of this statement will assign a specific value to x that
satisfies p. For instance, for integer x

x :=? st (∃ i :: x = 2 × i)

12 R. Joshi and J. Misra

assigns any even number to x, and
x :=? st x > ′x, where ′x denotes the value of x before the assignment

increases the value of x arbitrarily.

4.1.3. Constraining Random Assignments

In constructing a constrained program a random assignment is replaced by a
specific assignment. If

x :=? st p, is replaced by
x := e

it has to be shown that p holds after the assignment x := e.
There is one caveat in constructing these proofs. Earlier, we had said that a

constrained program inherits all safety properties of the original program. This is
true only if the random assignments have been correctly constrained. Therefore,
it cannot be assumed that the constrained program inherits the safety properties
until the correctness of these assignments in the constrained program have been
shown. In particular, the proof of correctness of these assignments can not assume
any safety properties of the original program; any such assumption has to be
proven explicitly in the constrained program.

4.2. Fair Unordered Channel

In order to illustrate proofs with random assignments we take the example of
a channel interposed between a sender and a receiver. A first-in-first-out (fifo)
channel guarantees that the order of delivery of messages is the same as the
order in which they were put into the channel. In this section we consider a fair
unordered channel in which (1) the messages are delivered in random order, and
(2) every message sent is eventually delivered. A fifo channel implements both
requirements, but it is not maximal.

This problem, couched as a message transmission problem, has a number of
other applications. In particular, the solution can be used to output all natural
numbers in some order, and any order is possible. The solution can be used as a
fair scheduler for programs that have an infinite number of actions, and it admits
any fair schedule.

We consider the following simplification of the problem. A program has an
infinite input sequence x and it has to generate a sequence y that is a permutation
of x; any permutation is a possible output. We assume further that the items in
x are distinct, which can be assured by appending a unique sequence number to
each item of x. Then, every item in y corresponds to a unique item in x, and
vice versa. The specification of the program is as follows: the safety conditions
state that every item in y is from x and that the elements in y are unique; the
progress condition states that every item of x appears in y eventually.

(∀ j :: (∃ i :: xi = yj)),
(∀ i, j :: yi = yj ⇒ i = j), and
(∀ i :: true 7→ (∃ j :: xi = yj)).

4.2.1. Maximal Solution for Fair Unordered Channel

Our solution consists of two actions, read and write. In the read action an item
is removed from x and stored in a set z; in the write action an item from z is

Maximally Concurrent Programs 13

removed and appended to sequence y. It is not sufficient to remove a random
item of z in write; then, the progress property may not hold. Therefore, we
associate a height, a natural number, with each item that is placed into z and
in the write action remove any item with the smallest height from z. An item
is assigned any height greater than or equal to the value of variable t when it is
added to z; we describe below how t is computed.

In the following program, heights of items are stored in array H . Variables
i, j denote the number of items read from x and written to y, respectively.

Program FUnCh
var i, j, t: integer; c: item; x, y: sequence of item;

z: set of item;
H : array item of natural

initially i = 0 ∧ j = 0 ∧ t = 0 ∧ y = 〈〉 ∧ z = ∅
read:: c := xi; H [c] :=? st H [c] ≥ t;

z := z ∪ {c}; i := i + 1
write:: z 6= ∅ →

c :=? st c ∈ z ∧ (∀ d : d ∈ z : H [c] ≤ H [d]);
t, yj, z, j := H [c] + 1, c, z − {c}, j + 1

end {FUnCh}

The following properties hold for FUnCh.

(∀ j :: (∃ i :: xi = yj)), and
(∀ i :: true 7→ (∃ j :: xi = yj)).

We leave it to the reader to prove these properties. For the progress property,
it has to be shown that each item u in z is selected eventually, as c, in write.
Let p be the number of items in z whose height is less than t. Show that in the
pair (H [u] + 1 − t, p) both components are non-negative, the pair is unaffected
by the execution of read, and it decreases lexicographically whenever an item is
removed from z. Therefore, eventually, u is removed.

4.2.2. The Constrained Program

Let Y be any sequence that is a permutation of x, i.e.,

(∀ j :: (∃ i :: xi = Yj)),
(∀ i, j :: Yi = Yj ⇒ i = j), and
(∀ i :: (∃ j :: xi = Yj)).

We show that Y is a possible output of the program. A constrained program
is shown below in which, in addition to the transformations described in section
3.1, the random assignments have been replaced by specific assignments.

Program FUnCh′

var i, j, t: integer; c: item; x, y, Y : sequence of item;
z: set of item;
H : array item of natural

initially i = 0 ∧ j = 0 ∧ t = 0 ∧ y = 〈〉 ∧ z = ∅
read′:: Yj /∈ z →

c := xi; H [c] := k st c = Yk;
z := z ∪ {c}; i := i + 1

write′:: Yj ∈ z →

14 R. Joshi and J. Misra

z 6= ∅ →
c := Yj ;
t, yj , z, j := H [c] + 1, c, z − {c}, j + 1

end {FUnCh′}

Notes: The assignment to H [c] in read′ is not a random assignment; there is
a unique value Yk that matches xi. The augmenting guard of write′, Yj ∈ z,
implies the original guard, z 6= ∅.

4.2.3. Proof of Maximality: Invariants

We write x0:i to stand for the set {x0, x1, ..., xi−1}; thus, x0:0 is the empty set.
The proofs of the following invariants are left to the reader.

P1. invariant x0:i = z ∪ y0:j.
P2. invariant y0:j = Y0:j .
P3. invariant (∀ d : d ∈ z : d = YH[d] ∧ j ≤ H [d]).
P4. t = j.

The proofs of P1, P2 are straightforward; these proofs use the fact that the
items in z are distinct. Proof of P3 needs some explanation. The action read′

adds c to z where H [c] = k ∧ c = Yk; hence, c = YH[c]. To see that j ≤ H [c]
in read′: it follows from P1 that xi /∈ y0:j, hence, c = xi = Yk where j ≤ k,
i.e., j ≤ H [c]. The action write′ removes c from z provided H [c] is the smallest
height. From P3, all heights are distinct because all items in Y are distinct;
furthermore, each height is at least j. From the guard, Yj ∈ z, the height of Yj

is the lowest and all other items in z have height exceeding j. Therefore, the
incrementation of j in write′ preserves j ≤ H [d] for each d in z. The proof of P4
is similar.

4.2.4. Correctness of Implementation of Random Assignments

We have to show

1. in read′: H [c] := k st c = Yk implements H [c] :=? st H [c] ≥ t.

2. in write′: c := Yj implements c :=? st c ∈ z ∧ (∀ d : d ∈ z : H [c] ≤ H [d]).

Proof of (1) In read′, prior to the assignment we have, from the invariant P1,

x0:i = z ∪ y0:j

⇒ {From P2, y0:j = Y0:j ; x is a permutation of Y }
xi /∈ Y0:j ∧ (∃ k :: xi = Yk)

⇒ {Predicate calculus}
(∃ k : k ≥ j : xi = Yk)

⇒ {k above is unique since items of Y are distinct; c = xi}
H [c] := k st c = Yk implements H [c] :=? st H [c] ≥ j

⇒ {From P4, j = t}
H [c] := k st c = Yk implements H [c] :=? st H [c] ≥ t

Proof of (2) We have to show after the assignment c := Yj that c ∈ z ∧ (∀ d :
d ∈ z : H [c] ≤ H [d]). Applying the axiom of assignment, we have to show before
the assignment that Yj ∈ z ∧ (∀ d : d ∈ z : H [Yj] ≤ H [d]) holds. The first term
in the consequent, Yj ∈ z, follows from the guard of write′. For the remaining
part,

Maximally Concurrent Programs 15

(∀ d : d ∈ z : H [Yj] ≤ H [d])
⇐ {H [Yj] = j from P3}

(∀ d : d ∈ z : j ≤ H [d])
⇐ {from P3}

true

4.2.5. Proof of Chronicle Correspondence

• (Safety) We have to show that y0:j = Y0:j , which follows from P2.

• (Progress) We have to show that j = J 7→ j = J + 1, for any natural
J . Each execution of write′ increments j. From the progress proof of write′

under execution correspondence the code of write′ is executed infinitely often.
Therefore, j increases without bound.

4.2.6. Proof of Execution Correspondence

• (Safety) The augmenting guards, Yj /∈ z and Yj ∈ z, are disjoint.

• (Progress of read′) true 7→ Yj /∈ z:

Yj ∈ z en Yj /∈ z , from program text
Yj ∈ z 7→ Yj /∈ z , basis rule of 7→
Yj /∈ z 7→ Yj /∈ z , implication rule of 7→
true 7→ Yj /∈ z , disjunction of the above two

• (Progress of write′) true 7→ Yj ∈ z: There is a unique k such that Yj = xk.
For any n,

Yj /∈ z ∧ k − j = n en k − j < n , from program text
Yj /∈ z ∧ k − j = n 7→ k − j < n , basis rule of 7→
Yj /∈ z 7→ Yj ∈ z , induction
true 7→ Yj ∈ z , similar to the proof for read′

4.3. Faulty Channel

We consider a faulty channel that may lose messages, duplicate any message an
unbounded (though finite) number of times, and permute the order of messages.
For any point in the computation, it is given that not all messages beyond this
point will be lost; otherwise, there can be no guarantee of any message trans-
mission at all. This is similar to the fault model of a channel assumed in the
Alternating Bit Protocol [SBW69] (the difference being that in the latter, the
channel does not reorder messages). Such a protocol can be studied (proved
correct) by encoding the communication between the sender and the receiver
using a maximal solution for the faulty channel. As we have remarked earlier,
it is sometimes essential to have a maximal solution in this case, e.g., for use
in verifying a communication protocol using model-checking. In this section, we
sketch a maximal solution for faulty channel, but we leave the actual program,
correctness and maximality proof to the reader. The maximality proof is similar
to that for the FUnCh.

We simulate a faulty channel using a bag b, analogous to the set z in FUnCh.

16 R. Joshi and J. Misra

The bag holds the messages that are to yet be delivered; it may hold several copies
of the same message to simulate duplication, and the nature of a bag implements
out-of-order delivery. To simulate message loss and duplication, we compute a
count n whenever a message is added to b; the count is an arbitrary natural
number, denoting the number of times that the message is to be delivered. If
n = 0 for a message then it is immediately discarded (the message is lost), and
for n exceeding 0 the message is added n times to b. In order to implement the
requirement that not all messages are eventually lost, we require that n become
non-zero periodically. Clearly, FairNatural can be used to compute n.

5. A Task Scheduler

In this section, we consider a scheduling problem in which concurrency is essen-
tial; the requirement of concurrency can be succinctly stated using maximality.
The following scheduling problem is from [Mis96]. We are given a finite number
of tasks and a compatibility relation among the tasks. Two tasks may be con-
currently executed provided they are compatible. It is given that an executing
task will terminate eventually. The goal is to design a task scheduler that repeat-
edly selects tasks for execution so that: (1) only compatible tasks are executed
concurrently, and (2) each task is executed infinitely often.

The following abstraction captures the essence of the scheduling problem. We
are given a simple, finite undirected graph in which there are no self-loops; the
graph need not be connected. Each node in the graph is black or white; all nodes
are initially white. In this abstraction, a node denotes a task and a black node
an executing task. Two nodes are neighbors if they are incompatible, i.e., not
compatible. We are given that every black node becomes white eventually, i.e.,
each task terminates. It is required to devise a coloring (scheduling) strategy so
that

• No two neighbors are simultaneously black (i.e., only compatible tasks may
be executed simultaneously).

• Every node becomes black infinitely often.

Note that the scheduler can only blacken nodes; it may not whiten a node.
A simple scheduling strategy is to blacken a single node, wait until it is

whitened, and then blacken another node. Such a strategy implements the first
requirement trivially because there is at most one black node at any time. The
second requirement may be met by blackening the nodes in some fixed, round-
robin order. Such a protocol, however, defeats the goal of concurrent execution
of tasks. So, we impose the additional requirement that the scheduling strategy
be maximal: any valid blackening of the tasks may be obtained from a possible
execution of our scheduler. By suitable refinement of our maximal scheduler we
derive a centralized scheduler and a distributed scheduler, as described in section
5.5.

5.1. Specification

Let b denote the set of black nodes at any stage in the execution. For sets x, y
and a node v, we write x = y + v to denote that v /∈ y ∧ x = y ∪ {v}.

Maximally Concurrent Programs 17

S0. initially b = ∅.
S1. (∀ u, v : u neighbor v : ¬(u ∈ b ∧ v ∈ b)).
S2. b = B co b = B ∨ (∃ v :: b = B + v ∨ B = b + v), for any B.
S3. For all v, true 7→ v ∈ b and true 7→ v /∈ b.

The specification S0 states that initially no tasks are executing; S1 states that
neighbors are never simultaneously black; S2 says that in a step at most one node
changes color. In S3, true 7→ v /∈ b is established by the tasks themselves (each
task terminates, and, hence, becomes white, eventually), and the scheduler has
to implement the remaining progress property, true 7→ v ∈ b.

5.2. A Scheduling Strategy

Assign a natural number, called height, to each node; let H [u] denote the height
of node u. The predicate u.low holds if the height of u is smaller than all of its
neighbors, i.e.,

u.low ≡ (∀ v : u neighbor v : H [u] < H [v]).

The scheduling strategy is to set b to ∅ initially, and the node heights in such a
way that neighbors have different heights. Then, the following steps are repeated.

• (Blackening Rule) Eventually consider each node, v, for blackening; if v /∈
b ∧ v.low holds then blacken v.

• (Whitening Rule) Simultaneous with the whitening of a node v, increase H [v]
to a value that differs from H [u], for all neighbors u of v.

Formally, the coloring strategy is described by the following program. There
is an action add(v), for each node v, that adds v to b provided v /∈ b ∧ v.low.
The termination of task v is simulated by remove(v), that removes v from b and
increases H [v] to a value that differs from H [u], for all neighbors u of v.

Program Scheduler
var u, v: node; b: set of node
var H : array item of natural
initially b = ∅ ∧ (∀ u, v : u neighbor v : H [u] 6= H [v])
〈∀v::

add(v):: v /∈ b ∧ v.low → b := b ∪ {v}
remove(v):: v ∈ b → b := b − {v};

H [v] :=? st H [v] > ′H [v] ∧ (∀ u : u neighbor v : H [u] 6= H [v])
〉

end {Scheduler}

Note: ′H [v] is the value of H [v] before the assignment.

5.3. Correctness of the Scheduling Strategy

We show that neighbors have different heights at all times, i.e.,

P0. invariant (∀ x, y : x neighbor y : H [x] 6= H [y]).

Proposition P0 holds initially. If P0 holds prior to the execution of add(v)
then it holds following the execution, because add(v) does not affect heights. If

18 R. Joshi and J. Misra

P0 holds prior to the execution of remove(v) it holds afterwards, because only
H [v] changes and H [v] 6= H [u], for any neighbor u of v, following remove(v).

Proof of S0 Follows from the initialization.

Proof of S1 The coloring strategy described above maintains the following in-
variant: for all v, v ∈ b ⇒ v.low. Observe that this proposition holds initially
since all nodes are initially white. A blackening step (add) preserves the proposi-
tion because v.low is a precondition for blackening. A whitening step (remove)
preserves the proposition because the antecedent of the proposition becomes
false.

From this invariant, if u, v are both black then they are both low, and from
the definition of low, it follows that u, v are not neighbors. Therefore, neighbors
are not simultaneously black.

Proof of S2 In add(v), the assignment b := b∪ {v} has the precondition v /∈ b.
In remove(v), the assignment b := b−{v} has the precondition v ∈ b. Hence, S2
is satisfied.

Proof of S3 We show that every node becomes black infinitely often in every
execution. Suppose that there is a node x that becomes black only a finite num-
ber of times in a given execution. Each blackening and the subsequent whitening
increases the height of a node. Therefore, if some neighbor y of x becomes black
infinitely often then its height will eventually exceed H [x], establishing ¬y.low,
and y will never be blackened subsequently. Hence, every neighbor of x is black-
ened finitely often. Applying this argument repeatedly, no node connected to x
can become black infinitely often. Therefore, beyond some stage, q, in an exe-
cution, all nodes in the component of the graph to which x belongs will remain
white forever. Let v be a node with the smallest height in this component at
q in the execution; since all nodes remain white beyond q their heights do not
change and v remains a node with the smallest height. Whenever v is considered
for blackening beyond q, it will meet all the conditions for blackening (v is white
and v.low holds); thus v will be blackened, contradicting the conclusion that v
remains white forever beyond q.

The proof by contradiction, given above, is typical of the style in which many
concurrent algorithms are proven in the literature. Next, we present an alterna-
tive proof, based on the style of UNITY, that avoids arguments by contradiction.

Formal proof of S3 It is required to prove that every node becomes black
eventually, i.e., for all x, true 7→ x ∈ b. Define the relative height x.rh of node x
to be the sum of the height differences of x and all its neighbors of lower heights,
i.e.,

x.rh = (+y : x neighbor y ∧ H [x] > H [y] : H [x] − H [y])

The following properties can be proven directly from the program text; each
7→ property is indeed an ensures property. For all x, y, n,

1. x.low 7→ x ∈ b.
2. x.rh = n ∧ (x neighbor y) ∧ y.low

7→ (x.rh = n) ∧ (x neighbor y) ∧ y ∈ b.
3. x.rh = n ∧ (x neighbor y) ∧ y ∈ b 7→ x.rh < n.

Maximally Concurrent Programs 19

We give an informal argument for the validity of these three properties. A
node’s height does not change as long as it remains white. Therefore, if x is low
and white then it remains low (because its neighbors’ heights can only increase)
and white, until blackened. Eventually, x is considered for blackening and then
blackened, establishing property (1). Proof of (2) is similar: the node y of the
lowest height among the neighbors of x will eventually be black and until then
x.rh is unchanged. Property (3) says that that node y, as described above, will
eventually become white and then x.rh is decreased because the height of y is
increased. The proof of true 7→ x ∈ b follows.

x.rh = n ∧ (x neighbor y) ∧ y.low
7→ (x.rh = n) ∧ (x neighbor y) ∧ y ∈ b

, From (2)
x.rh = n ∧ (x neighbor y) ∧ y.low 7→ x.rh < n

, transitivity with (3)
x.rh = n ∧ (∃ y :: (x neighbor y) ∧ y.low) 7→ x.rh < n

, disjunction over all y
x.rh = n ∧ ¬x.low 7→ x.rh < n

, using Invariant P0 and
the definition of low

x.rh = n ∧ x.low 7→ x ∈ b , strengthening LHS of (1)
x.rh = n 7→ x.rh < n ∨ x ∈ b

, disjunction on above two
true 7→ x ∈ b , induction on the above

5.4. Proof of Maximality

Let z be a sequence of sets, denoting a possible sequence of values of b in an
execution; assume that z is stutter-free, i.e., successive values in z are distinct.
Let z satisfy the specification (S0, S1, S2, S3), i.e., (S0′, S1′, S2′, S3′) hold.

S0′. z0 = ∅.
S1′. For all i, (∀ u, v : u neighbor v : ¬(u ∈ zi ∧ v ∈ zi)).
S2′. For all i, (∃ v :: zi+1 = zi + v ∨ zi = zi+1 + v).
S3′. For all v,
(∀ i :: (∃ j : i ≤ j : v ∈ zj)), and (∀ i :: (∃ j : i ≤ j : v /∈ zj)).

We create the following constrained program that includes a variable t, de-
noting the current point of computation. The variable u.next is an abbreviation
for the next value, j, above t where u is in zj. Formally,

u.next = (min j : j > t ∧ u ∈ zj : j).
Note that u.next is always defined, on account of S3′.

Program Scheduler ′

var u, v: node; b: set of node; t: integer
initially b = ∅ ∧ t = 0 ∧ (∀ v :: H [v] = v.next)
〈∀v::

add′(v):: zt+1 = zt + v →
v /∈ b ∧ v.low → b := b ∪ {v}; t := t + 1

remove′(v):: zt = zt+1 + v →
v ∈ b → b := b − {v}; H [v] := v.next; t := t + 1

〉

20 R. Joshi and J. Misra

end {Scheduler ′}

5.4.1. Invariants of the Constrained Program

The following invariants hold for Scheduler ′. The variable v is quantified over all
nodes.

P1. b = zt.
P2. zvh = zvh−1 + v where vh denotes H [v]
P3. (∀ u, v : u neighbor v : H [u] 6= H [v]).
P4. v.next ≥ H [v] ∧ v.next > t.
P5. (H [v] = v.next) ≡ v /∈ b.

Proof of P1 Initially, b = ∅, t = 0, and from (S0′) z0 = ∅. Each action incre-
ments t and modifies b appropriately.

Proof of P2 This follows from the text of Scheduler ′ and S2′.

Proof of P3 This property is similar to invariant P0 proved for Scheduler .
However, we can not assert that this property is inherited by Scheduler ′ until we
show that the random assignment is correctly implemented. Therefore, we have
to construct a new proof. Let uh, vh denote H [u], H [v] respectively, and suppose
that uh = vh. Then, from P2

zvh = zvh−1 + v ∧ zuh = zuh−1 + u
⇒ {By assumption, uh = vh}

zuh = zuh−1 + v ∧ zuh = zuh−1 + u
⇒ {Set theory}

u = v

Thus, for distinct nodes u, v, we have H [u] 6= H [v]. Hence, the same result
applies for neighbors u, v.

Proof of P4 To see the first conjunct, note that initially, (∀v :: H [v] = v.next).
The only assignment to H [v] is H [v] := v.next in remove′(v); so v.next ≥ H [v]
is preserved by this assignment. Also, v.next is monotone in t; therefore, v.next
never decreases in Scheduler ′ because t never decreases.

The second conjunct follows from the definition of v.next.

Proof of P5 Initially P5 holds because b is ∅ and (∀ v :: H [v] = v.next). First,
we show that P5 is preserved by the execution of add′(v).

Define v.next.i = (min j : j > i∧v ∈ zj : j). Thus, v.next = v.next.t. Rewrite
condition P5 as (H [v] = v.next.t) ≡ v /∈ b. This holds as a postcondition of the
assignments

b := b ∪ {v}; t := t + 1
provided H [v] 6= v.next.(t + 1) holds as a precondition. We show below that
the precondition of add′(v), zt+1 = zt + v ∧ v /∈ b ∧ v.low and P5, implies
H [v] 6= v.next.(t + 1).

zt+1 = zt + v ∧ v /∈ b
⇒ {From the definition of v.next, (zt+1 = zt + v) ⇒ (v.next = t + 1)}

v.next = t + 1 ∧ v /∈ b
⇒ {P5: (H [v] = v.next) ≡ v /∈ b}

Maximally Concurrent Programs 21

H [v] = t + 1
⇒ {from definition, v.next.(t + 1) > t + 1}

H [v] 6= v.next.(t + 1)

It can be shown that H [u] and u.next are unaffected by the execution of
add′(v), for v 6= u. Also, from the text of remove′(v) it is seen that v /∈ b∧(H [v] =
v.next) is established.

5.4.2. Rewriting the guard of add′(v)

We show from the given invariants that the augmenting guard of add′(v), zt+1 =
zt + v, implies the original guard, v /∈ b ∧ v.low. Hence, the original guard may
be dropped in the constrained program. This result is needed for the proof of
progress in chronicle correspondence; see (2) of section 5.4.4.

From b = zt (see P1) and zt+1 = zt + v, we have v /∈ b. We show that v.low
holds, i.e., for neighboring nodes u, v, H [v] < H [u].

zt+1 = zt + v
⇒ {b = zt from P1}

v /∈ b ∧ v /∈ zt ∧ v ∈ zt+1

⇒ {Definition of v.next}
v /∈ b ∧ v.next = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1

⇒ {From P5, (H [v] = v.next) ≡ v /∈ b}
H [v] = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1

⇒ {Given u, v are neighbors, v ∈ zt+1 ⇒ u /∈ zt+1, from S1′}
H [v] = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt+1

⇒ {Given v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt+1 from S2′, u /∈ zt}
H [v] = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt ∧ u /∈ zt+1

⇒ {using b = zt (P1), (H [u] = u.next) ≡ u /∈ b (P5), and u.next > t (P4)}
H [v] = t + 1 ∧ H [u] = u.next ∧ u.next > t

⇒ {H [v] = t + 1 ∧ H [u] > t. Apply P3}
H [v] < H [u]

5.4.3. Correctness of the Implementation of Random Assignment

The random assignment
H [v] :=? st H [v] > ′H [v] ∧ (∀ u : u neighbor v : H [u] 6= H [v])

is implemented in the constrained program by
H [v] := v.next.

The precondition of the assignment, zt = zt+1 + v and (from P1) b = zt,
imply that v ∈ b. Hence, from P4 and P5, H [v] < v.next prior to the assignment;
now H [v] = v.next after the assignment, thus establishing H [v] > ′H [v]. The
condition (∀ u : u neighbor v : H [u] 6= H [v]) follows from P3.

5.4.4. Proof of Chronicle Correspondence

1. (Safety) b = zt follows from P1.

2. (Progress) t = N 7→ t = N + 1, for any natural N : exactly one guard of
Scheduler ′ holds at any stage in the computation because the guards are
disjoint and their disjunction is true. Execution of any action whose guard is
true increments t.

22 R. Joshi and J. Misra

5.4.5. Proof of Execution Correspondence

1. (Safety) Guards of all the actions are disjoint.

2. (Progress) We have to show
true 7→ zt+1 = zt + v, and
true 7→ zt = zt+1 + v.
We sketch a proof. From S3′ we can deduce that
(∀ i :: (∃ j : i ≤ j : zj+1 = zj + v)), and
(∀ i :: (∃ j : i ≤ j : zj = zj+1 + v)).

From (2) of section 5.4.4, t assumes values of successive natural numbers.
Therefore, eventually, zt+1 = zt + v and also eventually, zt = zt+1 + v.

5.5. Refining a Maximal Solution: Implementation of the
Scheduling Strategy

We consider the situation where each task (node) is executed on a separate
processor. First, we show how a central scheduler may schedule the tasks given
the compatibility relation. Next, we show how the scheduling may be distributed
over the processors.

5.5.1. Central scheduler

A central scheduler maintains a list of nodes and their current colors and heights.
Periodically, it scans through the nodes and blackens a node v provided v.low ∧
v /∈ b holds. Whenever it blackens a node it sends a message to the appropriate
processor specifying that the selected task may be executed. Upon termination
of the task, the processor sends a message to the scheduler; the scheduler whitens
the corresponding node and increases its height, ensuring that no two neighbors
have the same height. The scheduler may scan the nodes in any order, but every
node must be considered eventually.

This implementation may be improved by maintaining a set, L, of nodes that
are both white and low, i.e., L contains all nodes v for which v /∈ b ∧v.low holds.
The scheduler blackens a node of L and removes it from L. Whenever a node x is
whitened and its height increased, the scheduler checks x and all of its neighbors
to determine if any of these nodes qualify for inclusion in L; if some node, y,
qualifies then y is added to L. It has to be guaranteed that every node in L is
eventually scanned and removed; one possibility is to keep L as a queue in which
additions are made at the rear and deletions from the front. Observe that once
a node is in L it remains white and low until it is blackened.

5.5.2. Distributed scheduler

The proposed scheduling strategy can be distributed so that each node blackens
itself eventually if it is white and low. The nodes communicate by messages of
a special form, called tokens. Associated with each edge (x, y) is a token. Each
token has a value, a positive integer equal to |H [x] − H [y]|. This token is held
by either x or y, whichever has the smaller height.

It follows then that a node that holds all incident tokens has a height that
is smaller than all of its neighbors; if such a node is white, it may color itself

Maximally Concurrent Programs 23

black. A node, upon becoming white, increases its height by a positive amount d,
effectively reducing the value of each incident token by d (note that such a node
holds all its incident tokens, and, hence, it can alter their values). The quantity d
should be different from all token values so that neighbors will not have the same
height, i.e., no token value becomes zero after a node’s height is increased. If the
value of token (x, y) becomes negative as a result of reducing it by d, indicating
that the holder x now has greater height than y, then x resets the token value
to its absolute value and sends the token to y.

Observe that the nodes need not query each other for their heights, because
a token is eventually sent to a node of a lower height. Also, since the token
value is the difference in heights between neighbors, it is possible to bound the
token values whereas the node heights are unbounded over the course of the
computation. Initially, token values have to be computed and the tokens have to
be placed appropriately based on the heights of the nodes. There is no need to
keep the node heights explicitly from then on.

We have left open the question of how a node’s height is to be increased when
it is whitened. The only requirement is that neighbors should never have the same
height. A particularly interesting scheme is to increase a node’s height beyond
all its neighbors’ heights whenever it is whitened; this amounts to sending all
incident tokens to the neighbors when a node is whitened. Under this strategy,
the token values are immaterial: a white node is blackened if it holds all incident
tokens and upon being whitened, a node sends all incident tokens to the neigh-
bors. Assuming that each edge (x, y) is directed from the token-holder x to y,
the graph is initially acyclic, and each blackening and whitening move preserves
the acyclicity. This is the strategy that was employed in solving the distributed
dining philosophers problem by Chandy and Misra [CM84]; a black node is eat-
ing and a white node is hungry; constraint (S1) is the well-known requirement
that neighboring philosophers do not eat simultaneously. Our current problem
has no counterpart of the thinking state, which added a slight complication to
the solution in [CM84]. The tokens are called forks in that solution.

6. Summary

We have described the notion of maximality, which rules out implementations
with insufficient non-determinism. A maximal program for a given specification
has (upto stuttering) all the behaviors admitted by the specification. We showed
several examples of maximal solutions, including a fair unordered buffer and a
fair task scheduler. Notions similar to maximality have been studied elsewhere
in the literature, e.g., the various flavors of bisimulation due to Milner and oth-
ers [Mil89]. However, unlike bisimulation, which relates two programs (i.e., agents
of a process algebra), our notion of maximality relates a program written using
guarded-commands with a specification written in a UNITY-like temporal logic.
Although we have concerned ourselves here only with showing maximality, our
proof method may be used with any given set of executions, to show that a given
program admits all those executions.

Acknowledgments This paper has been enriched by comments and sugges-
tions from the PSP research Group at the University of Texas at Austin, the
Distributed Systems Reading Group at the Technische Universität München,
Germany, and several anonymous referees.

24 R. Joshi and J. Misra

A. Summary of UNITY logic

The UNITY logic, a fragment of linear temporal logic, has proof rules for reason-
ing about properties of programs. A short summary is given here; consult [Mis95a,
Mis95b] for details.

A.1. Safety

The fundamental safety operator of UNITY is constrains, or co for short. The
property p co q asserts that in any execution a state satisfying p is always
followed by a state satisfying q. In order to model stuttering steps p is required
to imply q. The co operator and its derivative operators are defined as follows,
where s is quantified over the actions of the program, and wp denotes weakest
precondition [Dij76]

p co q ≡ (∀ s :: p ⇒ wp.s.q)
stable p ≡ p co p
invariant p ≡ initially p and stable p

A predicate is stable if it remains true once it becomes true. A predicate is
invariant if it is stable and it holds in all initial program states. Observe that
p ∧ ¬q co p ∨ q is a property of a program if from any state where p holds it
continues to hold until q holds; if q never holds then p holds for ever.

The Substitution Axiom The operation of a program is over the reachable
part of its state space. The UNITY proof rules, however, do not refer to the set
of reachable states explicitly. Instead, the following substitution axiom is used
to restrict attention to the reachable states: if invariant p is a property of a
program then p may be replaced by true in any context.

A.2. Progress

The elementary progress operator, en, used in this paper has the following infor-
mal meaning. If p holds at any stage in the computation it will continue to hold
as long as q does not hold, and q holds eventually. Further, there is one (atomic)
action which guarantees to establish q starting in any p-state. Formally,

p en q
∆
= (p ∧ ¬q co p ∨ q) ∧ (∃ s :: (p ∧ ¬q) ⇒ wp.s.q)

where s is quantified over all the actions of the program.
Given p en q, from the second conjunct in its definition, there is an action of

the program that establishes q starting in any state in which p ∧ ¬q holds; from
the first conjunct, once p holds it continues to hold at least until q is established.
Therefore, starting in a state in which p holds q will eventually be established.

Most of the progress properties of UNITY are expressed using the 7→ (leads-
to) operator, a binary relation on state predicates. It is the transitive, disjunctive
closure of the ensures relation, i.e., the strongest relation satisfying the following
three conditions:

(basis)
p en q

p 7→ q

Maximally Concurrent Programs 25

(transitivity)
p 7→ q, q 7→ r

p 7→ r

(disjunction) In the following, S is any set of predicates.
(∀ p : p ∈ S : p 7→ q)

(∃ p : p ∈ S : p) 7→ q

Derived Rules for leads-to There are several derived rules for reasoning about
the progress properties. Here, we mention only the ones used in this paper.

• implication

p ⇒ q

p 7→ q

• lhs-strengthening, rhs-weakening

p 7→ q

p′ ∧ p 7→ q ,
p 7→ q ∨ q′

• cancellation
p 7→ q ∨ r , r 7→ s

p 7→ q ∨ s

• PSP

p 7→ q , r co b

p ∧ r 7→ (q ∧ b) ∨ (¬r ∧ b)

• Induction: In the following M is a total function mapping program states
to a well-founded set (W,≺).

〈∀ m : m ∈ W :: p ∧ M = m 7→ (p ∧ M ≺ m) ∨ q〉

p 7→ q

In this paper we have used induction over natural numbers only.

References

[AO97] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequential and Con-
current Programs. Springer–Verlag, 1997.

[APP93] Flemming Andersen, Kim Dam Petersen, and Jimmi S. Pettersson. Program Ver-
ification using HOL-UNITY. In HUG’93: HOL User’s Group Workshop, volume
780 of LNCS, pages 1–17. Springer–Verlag, 1993.

[CM84] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transac-
tions on Programming Languages and Systems, 6(4):632–646, 1984.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison Wesley, 1988.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

[Lam83] Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor, Informa-
tion Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668,
Paris, Sep 1983. IFIP, North-Holland.

[Mil89] R. Milner. Communication and Concurrency. International Series in Computer
Science, C. A. R. Hoare, Series Editor. Prentice-Hall International, London, 1989.

26 R. Joshi and J. Misra

[Mis95a] Jayadev Misra. A logic for concurrent programming: Progress. Journal of Com-
puter and Software Engineering, 3(2):273–300, 1995.

[Mis95b] Jayadev Misra. A logic for concurrent programming: Safety. Journal of Computer
and Software Engineering, 3(2):239–272, 1995.

[Mis96] Jayadev Misra. A discipline of multiprogramming, work in progress, ftp access at
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z, 1996.

[Pau99] Lawrence C. Paulson. Mechanizing UNITY in Isabelle. Technical Report 467,
Computer Laboratory, University of Cambridge, May 1999.

[SBW69] R. A. Scantlebury, K. A. Bartlett, and P.T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Communications of the ACM,
12(5):260–261, May 1969.

