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Abstract. One of the main challenges facing the software development
as well as the hardware communities is that of demonstrating the cor-
rectness of built artifacts with respect to separately stated requirements.
Runtime verification is a partial solution to this problem, consisting of
checking actual execution traces against formalized requirements. A re-
lated activity is that of humans attempting to understand (or compre-
hend) what the system does when it executes, for validation purposes, or
for simply operating the system optimally. For example, a key challenge
in operating remote spacecraft is that ground operators must rely on the
limited visibility available through spacecraft telemetry in order to assess
spacecraft health and operational status. In this paper we illustrate the
use of the rule-based runtime verification system LogFire for supporting
such log comprehension. Specifically, LogFire is used for generating ab-
stract events from the concrete events in logs, followed by a visualization
of these abstract events using the D3 visualization framework.

1 Introduction

1.1 Motivation

Demonstrating the correctness of a software or hardware artifact is a challenging
problem. In the ideal case we want to prove the artifact correct for all possible
input. Unfortunately, full verification is still cost-prohibitive for complex sys-
tems (especially those with tight deadlines), so practitioners typically use less
formal, but cheaper, alternatives to build confidence in their systems. One such
alternative is runtime verification, which checks a particular execution against a
formal specification, which in this case becomes the test oracle. However, run-
time verification systems can be used during deployment as well, to monitor the
actual execution of the system in the field. Such monitoring can happen online,
as the system executes, or offline by analyzing log files generated by the running
system. Violations of the formal specification can be flagged by the runtime ver-
ification system, either leading to automated behavior modification in the case
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of online monitoring, or human driven systems modification in the case of offline
monitoring (as examples).

In this paper we suggest yet a slightly different use of a runtime verification
system: namely that of system comprehension. One of the key challenges in oper-
ating remote spacecraft is that the only knowledge ground operators have of the
spacecraft behavior is the telemetry sent down to earth. Such telemetry typically
consists of logs of system events and sensor measurements (such as battery volt-
age or probe temperature). A log may be viewed as a sequence of time-stamped
records with named fields. Current practice at NASA’s Jet Propulsion Labora-
tory (JPL) is to develop ad-hoc tools using various scripting languages, resulting
in a growing collection of scripts that are hard to maintain and modify, which
becomes a concern for long-running missions that last many years. A more de-
sirable solution is a specification-based approach where comprehension rules are
formulated in a human readable DSL (Domain Specific Language). In this paper,
we present such an approach applied to the telemetry received from the Curios-
ity rover currently on Mars, and part of the MSL (Mars Science Laboratory)
mission [31].

1.2 Contribution

More concretely, we illustrate the application of the LogFire runtime verifica-
tion system [25] and the D3 visualization system [14] to support human com-
prehension of logs sent down to earth from Curiosity. Although illustrated on
such logs, the approach is fully general. LogFire is a rule-based monitoring
framework, a concept extensively studied within the artificial intelligence com-
munity. It is implemented in the Scala programming language as an internal
DSL (essentially an API), and its core algorithm is a modification of the Rete
algorithm [19], to support event processing as well as fast indexing, as described
in [25]. Rete is one of the original algorithms for rule-based systems, optimizing
rule-evaluation, and known for its complexity.

Rules have the form: condition1, . . . , conditionn ⇒ action. The state of a
rule-system can abstractly be considered as consisting of a set of facts, referred
to as the fact memory, where a fact is a mapping from field names to values.
A condition in a rule’s left-hand side can check for the presence or absence of
a particular fact. A left-hand side matching against the fact memory usually
requires unification of variables occurring in conditions. In the case that all
conditions on a rule’s left-hand side match (become true), the right-hand side
action is executed, which can be any Scala code, including adding and deleting
facts, or generating error messages. The DSL allows domain specific constructs to
be mixed with Scala code, making the notation very expressive and convenient
for practical purposes, one of the reasons that LogFire is used daily on the
MSL mission.

LogFire was originally developed for verifying execution traces against for-
mal specifications. A main focus was monitoring of events carrying data, what is
also sometimes referred to as data parameterized monitoring. The purpose was
to understand how well rule-based systems fare for this form of task. In the work



presented here, we instead use LogFire for generating abstract facts from low
level events occurring in a log. Such facts are generated as a result of executing
actions of rules triggered by lower-level events and facts. The rule-based ap-
proach is particularly suited for this form of fact generation, compared to other
forms of runtime verification logics, such as temporal logics, regular expressions
or state machines. The collection of facts built in this manner is then fed into
a visualization tool implemented using the D3 library. The system is currently
in use by the Curiosity operations team. A main core message of this work is
that runtime verification as a field should embrace a wide range of technologies
for not only verifying systems but also for learning and comprehending their
behavior.

1.3 Related work

In [26] we describe an attempt to build a DSL on top of LogFire in order to
make it even easier to formulate abstraction rules for log comprehension and
visualization. That work, however, is still a research prototype, and not (yet)
used in mission operations, as is the case with the work presented here.

Numerous systems have been developed over the last decade for supporting
monitoring of parameterized events, using various formalisms, such as state ma-
chines [21, 32, 11, 5, 2], regular expressions [1, 32], variations over the µ-calculus
[4], temporal logics [4, 32, 5, 22, 8, 9, 15], grammars [32], and rule-based systems
[7, 25]. LogFire itself was in part inspired by the Ruler system [7]. Other rule-
based systems include Drools [17], Jess [27] and Clips [13]. Standard rule
systems usually enable processing of facts, which have a life span. In contrast,
LogFire additionally implements events, which are instantaneous. Drools sup-
ports a notion of events, which are facts with a limited life span, inspired by the
concept of Complex Event Processing (CEP), described by David Luckham in
[28].

Two other rule-based internal DSLs for Scala exist: Hammurabi [20] and
Rooscaloo [33]. Hammurabi, which is not Rete-based, achieves efficient eval-
uation of rules by evaluating these in parallel, assigning each rule to a different
Scala actor. Rooscaloo [33] is Rete based, but is not documented in any
form other than experimental code. The Drools project has an effort ongoing,
defining functional programming extensions to Drools [18]. In contrast, by em-
bedding a rule system in an object-oriented and functional language, as done in
LogFire, we can leverage the already existing host language features.

TraceContract [5] and Daut (Data automata) [23, 24] are internal Scala
DSLs for trace analysis based on state machines. They allow for multi-transitions
without explicitly naming the intermediate states, which allows for temporal
logic like specifications, in addition to data parameterized state machines. Trace-
Contract was deployed throughout the LADEE mission [29], checking com-
mand sequences (similar format as logs) sent to the spacecraft, as documented
in [6] at an early stage of that project.



1.4 Contents

The paper is organized as follows. Section 2 introduces the rule-based system
LogFire, illustrating how it can be used for verifying the correctness of pro-
gram/system executions. The example is that of general deadlock potential de-
tection between any number of tasks, chosen since it illustrates the expressive
power of rules. Section 3 presents the application of LogFire to abstract and
visualize telemetry from the Curiosity rover. Finally, Section 4 concludes the
paper.

2 The LogFire runtime verification system

LogFire [25] is an API in the Scala programming language, also here re-
ferred to as an internal DSL, created for writing rule-based runtime monitors.
A monitor is specified as a set of rules, each of the form: lhs ⇒ rhs, which
operate on a database of facts, called the fact memory. Rule left-hand sides test
on incoming events, as well as presence or absence of facts in the fact memory.
Right-hand sides (actions) can add facts to the fact memory, delete facts, issue
error messages, and generally execute any Scala code. A monitor takes as input
a sequence of events, consumed one at a time, and for each event executes the ac-
tions of those rules whose left-hand sides evaluate to true. Monitors can be used
to analyze the execution of a program as it executes or to analyze logs produced
by the program. LogFire is an implementation of the Rete algorithm [19],
specifically as it is described in [16], modified to process instantaneous events
(in addition to facts that have a life span), and to perform faster lookups in
the fact memory. We will illustrate LogFire using the example of detecting
deadlock potentials [10] in a program by just analyzing a single execution trace
generated by an instrumented version of the program. This example illustrates
the flexibility of using a rule-based system. The reader is referred to [25] for more
details about the implementation of LogFire.

2.1 The deadlock potential detection problem

Deadlock potentials in a program can very easily be detected by analyzing single
execution traces generated by an appropriately instrumented program. We con-
sider traces that only contain two kinds of events: lock(t, l), representing that
task t takes the lock l; and unlock(t, l), representing that task t releases lock l.
As described in [10], the standard technique for detecting deadlock potentials is
to build a lock graph, where nodes are locks and where there is an edge between
two nodes (locks) l1 and l2, labelled with task id t, if task t at some point holds
lock l1 while taking lock l2. Nodes and edges are only added to the graph (never
deleted). If at some point the graph contains a cycle it indicates the potential
for deadlock, although not necessarily an actual deadlock. The algorithm can
typically be made efficient in practice since it only needs to check for deadlock
potentials, in contrast to, say, a model checker, which typically has to search the
reachable state space for actual deadlocks.



Figure 1 shows an example illustrating how the algorithm works. The left-
hand side shows three tasks (say, threads in a multi-threaded program), each
taking two locks, then entering a critical section, and then releasing the locks.
The locks are taken in a circular manner: a deadlock can occur if the tasks are
scheduled such that each gets to take their first lock, but not the second. After
that point none of the tasks can take the second lock since it is already held by
one of the other tasks. Testing may not reveal this deadlock which only happens
with certain schedules. For example, if we run these tasks in a sequential manner
(first task T1, then T2, and then T3), no deadlocks will occur. However, we can
record the lockings and unlockings in a graph, as shown on the right of Figure
1. Each node is a lock, and an edge is drawn from a lock lx to a lock ly, labelled
with task Tz if task Tz at some point holds lock lx while taking lock ly. If this
graph ends up containing a cycle, as in this case, we have detected the potential
for a deadlock.

T1 : lock(l1); lock(l2);
〈critical section 1〉

unlock(l2); unlock(l1)

T2 : lock(l2); lock(l3);
〈critical section 2〉

unlock(l3); unlock(l2)

T3 : lock(l3); lock(l1);
〈critical section 3〉

unlock(l1); unlock(l3)

1

T1

l2

T2

l3

T3

l

Fig. 1. Example illustrating three tasks T1, T2, and T3, taking three locks l1, l2, and
l3 in a cyclic manner, opening for a deadlock potential. This is detected as a cycle in
the corresponding lock graph

Traditional implementations of such deadlock-potential checkers are coded as
algorithms in a programming language [10]. An alternative is to formulate such
a checker in a logic as a monitor specification, expressing that there must be no
such cycles. The general case involves a cycle between any number n of tasks.
It turns out, however, that traditional temporal logic is not expressive enough
for the case where n is unknown (it can vary at execution time). Temporal logic
solutions for exactly two tasks are shown in [3, 34]. For example, the solution
provided in [34] has the following form (with some minor changes for presentation
purposes) expressed in linear temporal logic (Ltl) extended with data, and
stating the property that no cycles should exist between two tasks and locks:



∀t1, t2 : Task, l1, l2 : Lock •
G (
¬lock(t1, l2) U (lock(t1, l1) ∧ (¬unlock(t1, l1) U lock(t1, l2)))
→
G ¬(¬lock(t2, l1) U (lock(t2, l2) ∧ (¬unlock(t2, l2) U lock(t2, l1))))

)

This formula can be read as follows: always (G), if task t1 does not take lock l2
until (U) it takes lock l1, and from then on does not release l1 until (U) it takes
l2, then always (G), it is not the case that task t2 follows the opposite pattern.
Besides being cumbersome to read, it only captures the situation for two tasks
and two locks. As we show in the next section, using a rule-based logic makes it
possible to express the property for an arbitrary number of tasks.

2.2 Formulating deadlock detection in LogFire

Assume that our traces contain the two events: lock(t,l) and unlock(t,l). The
cycle detection property (that no cycles should exist) is shown in Figure 2.
The main component of LogFire is the trait1 Monitor, which any user-defined
monitor must extend to get access to the constants and methods provided by the
rule DSL. The events lock and unlock are short-lived instantaneous observations
about the system being monitored, those submitted to the monitor. In contrast,
facts, in this case Locked and Edge, are long-lived pieces of information stored
in the fact memory of the rule system, generated and deleted explicitly by the
rules. The monitor contains five rules. Each rule has the form:

name -- condition1 & . . .& conditionn 7−→ action

Event and fact names, as well as parameter names are values of the Scala
type Symbol, which contains quoted identifiers such as ’t. The rules read as
follows. The first rule, named lock, states that on observation of a lock(’t, ’l)
event we insert a Locked(’t, ’l) fact in the fact memory, representing the fact
that task t holds the lock l. The second rule, named unlock, states that if a
task t holds a lock l (represented by Locked(’t, ’l)), and an unlock(’t, ’l) event
is observed, then that Locked fact is removed from the fact memory. The third
rule, named edge, states that if a task t holds a lock l1 (represented by Locked(’t,
’l1), and a lock(’t, ’l2) event is observed, then an edge from l1 to l2 is drawn. The
fourth rule, named close, performs the transitive closure of the edge-relation.
Note that LogFire for each event first evaluates all left-hand sides, recording
which evaluate to true. Then it deletes the event from the fact memory, evaluates
all the corresponding right-hand sides, and continues evaluating rules until a
fixed point is reached (infinite loops are possible to program by a mistake). Only

1 A trait in Scala is a module concept closely related to the notion of an abstract
class, as for example found in Java.



class NoLockCycles extends Monitor {
val lock , unlock = event
val Locked, Edge = fact

"lock" −− lock(’t,’ l ) 7−→ insert(Locked(’t ,’ l ))

"unlock" −− Locked(’t,’l) & unlock(’t ,’ l ) 7−→ remove(Locked)

"edge" −− Locked(’t,’l1) & lock(’t ,’ l2) 7−→ insert(Edge(’l1 ,’ l2 ))

"close" −− Edge(’l1,’l2) & Edge(’l2 ,’ l3) & not(Edge(’l1 ,’ l3 )) 7−→
insert (Edge(’l1 ,’ l3 ))

"cycle" −− Edge(’l1,’l2) 7−→ {
if (get (’ l1) == get(’l2)) fail ("cycle detected on " + get(’l1))

}
}

Fig. 2. No-lock-cycles property in LogFire

hereafter is the next event is consumed. This special handling of events is one
difference wrt. the original Rete algorithm described in [19, 16]. The last rule,
named cycle, detects cycles in the graph. It states that if there is an edge from
a lock to itself then it is considered a deadlock potential. Symbols representing
bindings of parameter values must be accessed with special get functions.

A monitor can be applied as shown in Figure 3. Since the trace exposes a
deadlock potential, an error trace is produced as shown in Figure 4. Each entry
in the error trace shows the number of the event, the event, the fact that it
causes to be generated, and the rule that triggers.

2.3 Improving the specification

The deadlock potential detection specification shown in Figure 2 can be improved
in three ways. Firstly, it can yield false positives. It will for example report
a deadlock potential for a single task that accesses locks in a cyclic manner,
although a single task cannot deadlock on its own (assuming reentrant locks).
In order to exclude such false positives (although it can be argued that any
cycles should be avoided), edges in the lock graph should be labelled with task
ids, and a cycle is only reported in case all the task ids on the edges of the
cycle are different. Secondly, the monitor will report the same deadlock potential
multiple times due to the fact that different cycles (starting in different locks)
represent the same problem. Thirdly, lock(t,l) and unlock(t,l) events are assumed
to have exactly two arguments. Events in general may have many arguments,



object ApplyMonitor {
def main(args: Array[ String ]) {
val m = new NoLockCycles

m.addEvent(’lock)(1, "l1")
m.addEvent(’lock)(1, "l2")
m.addEvent(’unlock)(1, "l2")
m.addEvent(’unlock)(1, "l1")

m.addEvent(’lock)(2, "l2")
m.addEvent(’lock)(2, "l3")
m.addEvent(’unlock)(2, "l3")
m.addEvent(’unlock)(2, "l2")

m.addEvent(’lock)(3, "l3")
m.addEvent(’lock)(3, "l1")
m.addEvent(’unlock)(3, "l1")
m.addEvent(’unlock)(3, "l3")
}
}

Fig. 3. Applying the lock pattern monitor to a trace corresponding to executing the
three tasks in Figure 1 in sequential order

and instead of referring to them in a positional style as shown, we may want to
pick out those arguments we are interested in by name, as for example with the
notation unlock(’task → ’t, ’lock → ’l). The alternative specification shown in
Figure 5 is an attempt to make these improvements and to illustrate additional
features of LogFire.

As can be seen, event arguments are referred to by name, as in unlock(’task
→ ’t,’lock → ’l). Each edge now also includes a set of task ids, namely those
involved in forming the edge. A check in rule close is now performed that two
edges can only be composed (transitive closure) if their task ids differ. We see
here the use of set operations and sets as arguments to facts. Finally, in order
to avoid a deadlock between a set of tasks to be reported multiple times, a
variable is declared in the monitor, storing the sets of tasks that have so far
been reported being involved in a deadlock potential. The rule cycle avoids to
report a deadlock potential between a set of tasks in case a such has already been
reported for those tasks. This illustrates how rules can be mixed with Scala
code, including declaration of variables and methods.



[1] ’ lock (1,"l1") =⇒ ’Locked(1,"l1")
rule : "lock" −− ’lock(’t,’ l ) 7−→ {...}

[2] ’ lock (1,"l2") =⇒ ’Edge("l1","l2")
rule : "edge" −− ’Locked(’t,’l1) & ’lock (’ t ,’ l2) 7−→ {...}

[5] ’ lock (2,"l2") =⇒ ’Locked(2,"l2")
rule : "lock" −− ’lock(’t,’ l ) 7−→ {...}

[6] ’ lock (2,"l3") =⇒ ’Edge("l1","l3")
rule : "close" −− ’Edge(’l1,’l2) & ’Edge(’l2 ,’ l3) & not(’Edge(’l1 ,’ l3 )) 7−→
{ ... }

[6] ’ lock (2,"l3") =⇒ ’Edge("l2","l3")
rule : "edge" −− ’Locked(’t,’l1) & ’lock (’ t ,’ l2) 7−→ {...}

[9] ’ lock (3,"l3") =⇒ ’Locked(3,"l3")
rule : "lock" −− ’lock(’t,’ l ) 7−→ {...}

[10] ’ lock (3,"l1") =⇒ ’Edge("l3","l1")
rule : "edge" −− ’Locked(’t,’l1) & ’lock (’ t ,’ l2) 7−→ {...}

[10] ’ lock (3,"l1") =⇒ ’Edge("l1","l1")
rule : "close" −− ’Edge(’l1,’l2) & ’Edge(’l2 ,’ l3) & not(’Edge(’l1 ,’ l3 )) 7−→
{ ... }

[10] ’ lock (3,"l1") =⇒ ’Fail("ERROR cycle detected on l1")
rule : "cycle" −− ’Edge(’l1,’l2) 7−→ {...}

Fig. 4. An error trace representing a lock cycle

3 Analyzing telemetry from the Curiosity rover

In this section, we describe how we have used LogFire to process telemetry
received from the Curiosity rover on Mars. Our focus here is on building tools
based on LogFire for processing telemetry in order to generate summaries that
can be used for creating effective visualizations for use by the daily operations
team. Our tools are integrated into the mission ground data system, and re-
ceive and automatically process telemetry from the rover several times a day.
As this telemetry is processed, the tools generate summary files, typically in
comma separated values (CSV) format. These summary files are in turn used
by visualizations built using the D3 library [12]; these visualizations are used
as part of a ”dashboard” that is regularly monitored by mission operators and



class NoLockCyclesImproved extends Monitor {
val lock , unlock = event
val Locked, Edge = fact

def getset (s : Symbol) = get[Set[Int ]]( s)

var cycles : Set[Set[ Int ]] = Set()

"lock" −− lock(’task → ’t ,’ lock → ’ l ) 7−→ insert(Locked(’t ,’ l ))

"unlock" −− Locked(’t,’l) & unlock(’task → ’ t ,’ lock → ’ l ) 7−→
remove(Locked)

"edge" −− Locked(’t,’l1) & lock(’task → ’ t ,’ lock → ’ l2) 7−→
insert (Edge(Set(get[ Int ](’ t )),’ l1 ,’ l2 ))

"close" −− Edge(’s1,’l1,’l2) & Edge(’s2,’ l2 ,’ l3) & not(Edge(’ ,’l1 ,’ l3 )) 7−→
{

if (getset (’ s1 ). intersect (getset (’ s2 )). isEmpty)
insert (Edge(getset (’ s1 ).union(getset (’ s2 )),’ l1 ,’ l3 ))

}

"cycle" −− Edge(’s,’l1,’ l2) 7−→
{

if (get (’ l1) == get(’l2) & !cycles . contains(getset (’ s )))
fail ("cycle detected between tasks" + get(’s))

cycles += getset(’s)
}
}

Fig. 5. Improved no-lock-cycles property in LogFire

science planners. In the following subsections, we give two examples of telemetry
processing tools and show how they are used in building useful visualizations.2

3.1 Monitoring sequence execution status

The first example shows a tool that monitors execution of spacecraft sequences.
A sequence is a list of commands that perform specific spacecraft actions such as
taking an image, or deleting a file, or possibly even invoking another sequence.

2 In the interests of readability, and to comply with NASA restrictions on publishing
mission data, we have simplified the examples and modified the actual names and
times from actual telemetry.



class SeqMonitor extends EvrMonitor {
val SeqStart, SeqDone = fact
def seq name(s:String) = words(s)(2) // Helper function

"start_seq" −− EVR(’id → "EVR_SEQ_START", ’sclk → ’S, ’msg → ’M) 7−→ {
val w = words(’M.s)
val seq name = w(15).slice(1, w(15).length−2)
insert (SeqStart(seq name, ’S.d))

}

"end_seq_ok" −− EVR(’id → "EVR_SEQ_SUCCESS", ’sclk → ’E, ’msg → ’M)
& ’SeqStart(’name, ’S) 7−→ {

if (seq name(’M.s) == ’sname.s) {
replace (SeqStart)(SeqDone(’name.s, ’S.d, ’E.d, "OK"))

}
}

"end_seq_fail" −− EVR(’id → "EVR_SEQ_FAILURE", ’sclk → ’F, ’msg → ’M)
& ’SeqStart(’name, ’S) 7−→ {

if (seq name(’M.s) == ’name.s) {
replace (SeqStart)(SeqDone(’name.s, ’S.d, ’F.d, "FAIL"))

}
}

"print" −− SeqDone(’name, ’S, ’E, ’stat) 7−→ {
updateCSV(’name.s, ’S.d, ’E.d, ’ stat . s)
remove(SeqDone)
}

}

Fig. 6. Rules for sequence execution

The operations team typically uplinks a list of sequences every other day con-
taining the commands that the rover should perform over the next two days.
This includes mobility requests (such as driving to a specific location), science
requests (such as taking a panorama or firing a laser), as well as engineering
requests (such as deleting old data files to free up space on flash memory).

Figure 6 shows the rules for processing telemetry related to sequence execu-
tion. These rules rely on processing an event log which is generated on board and
sent to the ground periodically. The event log consists of a list of EVRs (short
for “event reports”); each EVR has an associated timestamp (indicating the sclk,
or spacecraft clock time when the event occurred), a unique identifier, and a text
message describing the event. The SeqMonitor class extends the trait EvrMoni-
tor, which itself extends trait Monitor, and in addition defines various utilities,



Fig. 7. Visualization showing actual vs predicted sequence run times

such as the EVR event. The rule start seq is triggered by the log event EVR -

SEQ START and adds a fact SeqStart to the fact memory, recording the name
and start time of the sequence. A sequence may terminate either successfully
or unsuccessfully. A successful termination is denoted by the event EVR SEQ -

SUCCESS, which results in the SeqStart fact being replaced by a fact SeqDone,
which records the name, start and end times of the sequence, along with the
status OK, indicating that the sequence completed successfully. A sequence that
terminates with failure results in the SeqStart fact being replaced by a fact Se-
qDone, which records the name, start and end times as before, along with the
status FAIL. Finally, the print rule updates a CSV file containing a row for each
sequence invocation, recording the start and end times and execution status.

This CSV file is useful for building various visualizations that track how
ground commands are being performed by the rover. As an example, Figure 7
shows a visualization used by the data management operations team to compare
the actual onboard execution times across multiple days (shown on the x-axis)
for two sequences (dmx 00103 and dmx 00105) against the times predicted by
ground tools. As the figure shows, such a visualization makes it easy to see that
the predictions for the dmx 00103 sequence are much more accurate than the
predictions for the dmx 00105 sequence. This observation can then be used to
further refine the models used by the ground tools to improve prediction times.

3.2 Monitoring communication windows

Figure 8 shows the rules used for monitoring Curiosity’s communication win-
dows [30]. A communication window defines the periods when the spacecraft
communicates either directly with Earth, or with one of several relay orbiting
spacecraft. Due to the importance of communication, monitoring rover perfor-
mance during a window is of great interest to the operations team. To aid this



class CommWindowMonitor extends EvrMonitor {
def wid(s : String ,k: Int=5) = { val w = words(s)(k) ; w. slice (1,w.length ). toInt }

"prep" −− EVR(’id → "EVR_BEGIN_PREP", ’sclk → ’P, ’msg → ’M) 7−→ {
insert (’Prep(wid(’M.s,4), ’P.d))

}

"active" −− EVR(’id → "EVR_BEGIN_ACTIVE", ’sclk → ’A, ’msg → ’M)
& ’Prep(’W, ’P) 7−→ {

if (wid(’M.s,2) == ’W.i) {
insert (’ Active (’W.i, ’A.d))

}
}

"cleanup" −− EVR(’id → "EVR_CLEANUP", ’sclk → ’C, ’msg → ’M)
& ’Active (’W, ’A) 7−→ {

if (wid(’M.s,1) == ’W.i) {
insert (’Cleanup(’W.i, ’C.d)

}
}

"print" −− ’Prep(’W, ’P) & ’Active(’W, ’A) & ’Cleanup(’W, ’C) 7−→ {
updateCSV(’W.i, ’P.d, ’A.d, ’C.d)
remove(’Prep)
remove(’Active)
remove(’Cleanup)
}
}

Fig. 8. Rules for communication windows

monitoring, we developed a set of rules that are used to generate summaries from
rover telemetry; these summaries are in turn used to build useful visualizations
that help the operational team monitor window performance.

A communication window consists of 3 phases – a prep phase, when on-
board software configures the rover for the communication window (for instance,
by turning on appropriate radios and retrieving from various cameras the im-
ages that will be sent to Earth); an active phase, during which the commu-
nication takes place; and a cleanup phase, for performing any cleanup actions
(for instance, turning the radios off). Figure 8 shows four rules for processing
telemetry for a communication window. The prep rule is triggered by the event
EVR BEGINS PREP that indicates the start of a communication window; it adds
the fact Prep(w, p) to the fact memory. Here w is the (unique) integer identifier
associated with the window (this identifier is reported in the event message, and



Fig. 9. Visualization showing communication window performance

is extracted by the helper wid function shown in the example), and p is the event
timestamp (which indicates the time when prep started). Next, the active rule
is used to detect when the active window begins; it is triggered by the EVR -

BEGINS ACTIVE event, and adds the fact Active(w, a) to the fact memory, where
w is the window identifier and a is the event timestamp. In a similar fashion,
the cleanup rule is triggered by the EVR CLEANUP event, and adds the Cleanup
fact to the memory. Finally, the print rule updates a CSV file that defines all
windows that have been performed on the rover; each row of this CSV file con-
tains the window identifier and times when the prep, active and cleanup phases
started.

The CSV files are used to build the visualization shown in Figure 9. This
visualization uses the window definitions in the CSV file to provide context for
assessing window performance. The top graph in the figure shows the percentage
of CPU time taken up by various tasks, including the DMS and PDP tasks
which respectively read files from flash memory and generate data packets for
downlink. The middle graph shows the volume of data sent through the radio
to an overhead orbiter; as the figure shows, the downlink rate varies over time,
reaching a maximum rate when the orbiter is directly overhead (approximately
halfway into the active session). Finally, the bottom graph shows the number
of images fetched from each of the four cameras during window prep; in the
example shown, the software fetched 13 images from the MHLI camera and 10
images from the MRDI camera (and no images from the other two cameras).
Such visualizations are useful to the operations team, which can use them to
determine, for instance, that the PDP task needs 40% of the CPU for packet
generation when the radio is communicating at its highest rates. This knowledge



helps guide decisions on whether or not to schedule other processor-intensive
activities during communication windows.

4 Conclusion and future work

We have described the use of a rule-based engine, the LogFire Scala library, in
building applications for processing telemetry. The applications are not limited
to checking specific logical or temporal properties (as is common in runtime
verification), but in addition generate summaries that are used to build effective
visualizations supporting systems comprehension. We have described how these
telemetry analysis applications are being deployed to process telemetry and build
visualizations illustrating various aspects of the behavior of the Curiosity rover.
The rule-based notation is shown to be sufficiently expressive and convenient for
the task. The combination of a monitoring logic with a high-level programming
language, in this case Scala, has turned out to be a crucial advantage.

Future work includes studying alternatives for defining the internal LogFire
DSL. LogFire is a deep embedding, meaning that we have defined the abstract
syntax for rules in Scala, in contrast to a shallow embedding as in [23], where
we would have used Scala’s own language constructs for writing rules. This
again means that as a default there is no type checking of rules beyond what we
program it to be. Another consequence is that user-defined names must be either
strings or symbols (of the Scala class Symbol), and to get to their values, in
case they represent event/fact parameters, the user has to apply get functions.
A more elegant solution could potentially be achieved by defining the DSL as a
syntactic extension of Scala, for example using the SugarScala tool available
at [35] (part of SugarJ). Finally, the intention is to deploy LogFire more
broadly, within MSL, as well as within other missions, as a general approach to
log analysis and comprehension at JPL.

References

1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittamplan, and
Julian Tibble. Adding trace matching with free variables to AspectJ. In OOP-
SLA’05. ACM Press, 2005.

2. Howard Barringer, Ylies Falcone, Klaus Havelund, Giles Reger, and David Ry-
deheard. Quantified Event Automata - towards expressive and efficient runtime
monitors. In 18th International Symposium on Formal Methods (FM’12), Paris,
France, August 27-31, 2012. Proceedings, volume 7436 of LNCS. Springer, 2012.

3. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Program
monitoring with LTL in Eagle. In Parallel and Distributed Systems: Testing and
Debugging (PADTAD’04), Santa Fee, New Mexico, USA, volume 17 of IEEE Com-
puter Society, April 2004.

4. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based
runtime verification. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer,
2004.



5. Howard Barringer and Klaus Havelund. TraceContract: A Scala DSL for trace
analysis. In 17th International Symposium on Formal Methods (FM’11), Limer-
ick, Ireland, June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72.
Springer, 2011.

6. Howard Barringer, Klaus Havelund, Elif Kurklu, and Robert Morris. Checking
flight rules with TraceContract: Application of a Scala DSL for trace analysis. In
Scala Days 2011, Stanford University, California, 2011.

7. Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for
run-time monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

8. David A. Basin, Felix Klaedtke, and Samuel Müller. Policy monitoring in first-order
temporal logic. In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Computer
Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, Proceedings, volume 6174 of LNCS, pages 1–18. Springer, 2010.
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