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Abstract. Recent developments in fast propositional satisfiability solvers
and proof-generating decision procedures have inspired new variations on
the traditional Nelson-Oppen style of theorem provers. In an earlier pa-
per, we described the design and performance of our explicating theorem
prover Verifun for quantifier-free formulas over the theories of equality,
rational linear arithmetic, and arrays. In this paper, we extend our orig-
inal Verifun architecture to support universal and existential quantifiers,
which arise naturally in many verification domains, and we verify key
correctness properties of our design.

1 Introduction

Verifying formulas with respect to a collection of underlying theories requires
a combination of both propositional and theory-specific reasoning. In an earlier
paper [12], we described the Verifun theorem prover, which uses a new style of
interaction between propositional and theory-specific decision procedures. This
architecture cleanly separates the propositional search from the decision proce-
dures for the underlying theories, thus allowing us to leverage recent advances
in propositional SAT solving [14, 18]. Similar ideas have also been proposed by
Barrett, Dill and Stump [3] and by de Moura and Rueß [8]. Although efficient for
quantifier-free formulas, none of these prior approaches support formulas with
quantifiers.

In contrast, many interesting problems in verification reduce to checking
validity of quantified formulas. For example, the Extended Static Checkers for
Modula-3 [10], Java [13], and multithreaded Java [11] use quantified formulas to
express important correctness properties; for instance, that a particular object
invariant must hold for all objects of a particular class, or that all elements of
an array must satisfy a given property. The Simplify theorem prover [9], which
forms the computational core of these extended static checkers, uses the classical
Nelson-Oppen method with heuristic instantiation to reason about the validity
of such quantified formulas.
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In this paper, we explore how to incorporate a heuristic instantiation strat-
egy into a modern, proof-explicating Nelson-Oppen prover such as Verifun. Our
goal is to build a theorem prover for quantified formulas that combines the per-
formance and scalability benefits of explicating theorem provers with the expres-
siveness of provers such as Simplify. Such an extended theorem prover would be
valuable for many uses in verification; for example, it would enable more robust
and scalable extended static checkers.

For simplicity, we describe Verifun as a satisfiability checker, which is the
dual of a validity checker or theorem prover. The presentation of our results
proceeds as follows. The following section describes the terminology used in this
paper, and also reviews the underlying components on which Verifun is based.
Section 3 presents the original Verifun architecture for quantifier-free formulas.
Section 4 extends that architecture to support quantified formulas and includes a
correctness proof for this design. The design is illustrated by means of an example
in section 5, and in section 6, we discuss issues related to efficient implementation
of our design. Section 7 discusses related work, and we conclude with section 8.

2 Background

2.1 Terminology and Notation

We use terminology that is standard in the literature. A term is a variable or
an application of a function to a sequence of terms. An atomic formula is a
propositional variable or an application of a predicate symbol to a sequence
of terms. A literal is either an atomic formula or its negation, and a clause
is a disjunction of literals. A monome is a conjunction of literals in which no
atomic formula is both affirmed and negated. We identify a monome m with the
partial truth assignment that assigns true to atomic formulas that are conjuncts
of m and assigns false to atomic formulas whose negations are conjuncts of
m. A formula is an arbitrary boolean combination of atomic formulas using
the operators ∧,∨ and ¬. (We initially consider only quantifier-free formulas,
and defer discussion of quantified formulas to Section 4.) We use the notation
F (x ← y) to denote the capture-free substitution of y for free occurrences of x
within the formula F .

The task of a satisfier is to decide whether an input formula, called a query,
is satisfiable for a given set of underlying theories. The underlying theories may
assume particular semantics for some predicate and function symbols, such as
“>” and “+”, while leaving others uninterpreted.

We use the following notation to denote validity and satisfiability. Given a
set of theories T , we write [F ]T (read “everywhere F (wrt T )”) to denote that F
is valid with respect to the theories. Similarly, we write 〈F 〉T (read “somewhere
F (wrt T )”) to denote that F is satisfiable with respect to the theories. We also
use the notations [F ]B and 〈F 〉B to denote that F is propositionally valid and
propositionally satisfiable, respectively. We assume that these operators satisfy
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the following laws, for any formula F and any monome m:

〈m〉B (1)
〈F 〉T ⇒ 〈F 〉B (2)

[F ]T ∧ 〈m〉T ⇒ 〈F ∧ m〉T (3)

Axiom (1) states that every monome is propositionally satisfiable; this follows
from the definition of monomes above. Axiom (2) states that any formula that
is satisfiable with respect to a set of theories T is also propositionally satisfiable.
Axiom (3) states that if F is a tautology, then the satisfiability of F ∧m follows
from the satisfiability of m.

The Verifun prover works via a collaboration between two components: a
propositional satisfiability (SAT) solver and a proof-generating decision proce-
dure. We review these two components next.

2.2 The SAT Solver

The SAT solver component decides the propositional satisfiability of a given
formula F, and, in the case where F is satisfiable, returns a satisfying truth
assignment for F . This satisfying truth assignment can be naturally represented
as a monome m that entails the formula F . Thus, we assume that the SAT solver
(procedure satisfyProp) obeys the following specification:

function satisfyProp(Formula F ) : Monome

Returns m where m is either a monome, or the value UNSAT , such that

m = UNSAT ⇒ ¬〈F 〉B
m 6= UNSAT ⇒ [m⇒ F ]B

In practice, most current SAT solver implementations [14, 20] require that we
first convert F to conjunctive normal form and replace each unique atomic for-
mula with a fresh propositional variable. For simplicity of presentation, however,
we ignore these details in our development.

2.3 The Proof-Generating Decision Procedure

The procedure satisfyTheories decides whether a given monome m is satisfiable
with respect to the underlying theories T . In our implementation, the individual
theories are combined in the traditional Nelson-Oppen style [17] using equality
sharing. If the monome m is unsatisfiable, the procedure satisfyTheories returns
a “proof” of the unsatisfiability of m. This proof is represented as a formula
R that is a tautology with respect to the theories (that is, [R]T ) and which
suffices to refute m via purely propositional reasoning (that is, [R⇒ ¬m]B). For
example, given the (unsatisfiable) monome:

(i = 0) ∧ (j = i + 1) ∧ ¬(j = 1) ∧ (k = i)
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a suitable inconsistency proof is the tautology:

(i = 0 ∧ j = i + 1)⇒ j = 1

from which the unsatisfiability of the monome follows via propositional reason-
ing. The specification of procedure satisfyTheories is as follows:

function satisfyTheories(Monome m) : Formula

Returns R where R is either a formula, or the value SAT , such that

R = SAT ⇒ 〈m〉T
R 6= SAT ⇒ [R]T ∧ [R⇒ ¬m]B

3 A Satisfier for Quantifier-Free Formulas

The original Verifun architecture for quantifier-free formulas is shown in Figure 1.
The procedure satisfy takes as input a quantifier-free formula F , and either
determines that F is unsatisfiable (that is, ¬〈F 〉T ), or it returns a satisfying
assignment for F . This satisfying assignment is represented as a monome that
is consistent with the underlying theories (that is, 〈m〉T ), and which entails the
query by propositional inference alone (that is, [m⇒ F ]B).

The procedure satisfy reasons about the satisfiability of F using a com-
bination of propositional reasoning, performed by the procedure satisfyProp,
and theory-specific reasoning, performed by the procedure satisfyTheories. The
theory-specific reasoning is recorded in the explicated formula E, which serves to
explicate at the propositional level the reasoning performed by satisfyTheories
in refuting earlier truth assignments for F . The optimized search and backtrack-
ing algorithms of satisfyProp can then leverage this explicated information to
quickly refute many other possible truth assignments.

The satisfy implementation works by repeatedly trying to find a propositional
satisfying assignment m for the conjunction F ∧ E of the query F with the
explicated formula E. If the conjunction is unsatisfiable, then so is F , since
the explicated formula E is a tautology. If the satisfying assignment m that is
discovered is consistent with the theories, then m is a valid truth assignment
for F . If m is inconsistent with the theories, then the call to satisfyTheories
explicates a formula R that is sufficient in refuting m through propositional
reasoning alone. The formula R is then conjoined with E, ensuring that the
truth assignment m is never reconsidered on a subsequent loop iteration.

Experimental results indicate that Verifun’s use of explicated clauses and
a fast SAT solver enables it to scale much better to large problems than ear-
lier provers such as Simplify [9]. For instance, on several of the UCLID bench-
marks [5], Verifun improves over Simplify’s performance by more than two orders
of magnitude [12].
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function satisfy(Formula F ) : Monome
Returns m where m is either a monome, or the value UNSAT , such that

m = UNSAT ⇒ ¬〈F 〉T
m 6= UNSAT ⇒ 〈m〉T ∧ [m⇒ F ]B

{
Formula E := true;
while (true) {

Monome m := satisfyProp(F ∧ E);
if (m = UNSAT ) {

return UNSAT ;
} else {

Formula R := satisfyTheories(m);
if (R = SAT ) {

return m;
} else {

E := E ∧ R;
}

}
}

}

Fig. 1. The Verifun Satisfier for Quantifier-Free Formulas

4 Deciding Satisfiability of Quantified Formulas

We now describe how to extend the Verifun architecture outlined above to rea-
son about quantified formulas. The following subsection introduces a number of
additional notations and concepts necessary for this discussion, subsection 4.2
provides a specification of the extended satisfier for quantified formulas, subsec-
tion 4.3 describes the corresponding implementation, and subsection 4.4 contains
a correctness proof sketch.

4.1 Terminology and Background

We extend our terminology to include the application of quantifiers. The defini-
tion of terms, atomic formulas, literals and clauses are as described in section 2.1.
However, we extend the definition of a formula so that it can be an atomic for-
mula, a boolean combination of formulas using the operators ∧,∨ and ¬, or a
quantified formula. A quantified formula is either a universally quantified for-
mula of the form ∀x.F , where F is a formula, or a negated universally quantified
formula. Following tradition, we sometimes use the shorthand ∃x.F as an ab-
breviation for ¬∀x.¬F . In addition, a monome can now contain both literals
and quantified formulas as defined above. Also, we assume for convenience that
the SAT solver (procedure satisfyProp) accepts a formula (with quantifiers) and
returns either a satisfying monome or the special value UNSAT as before. In
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doing so, we assume that the SAT solver treats each outermost quantified for-
mula (that is, a quantified formula that is not nested inside another quantified
formula) as an uninterpreted literal. In addition, we assume that all occurrences
of the same outermost quantified formula are treated as the same literal.

We write [F ]QT (respectively, 〈F 〉QT ) to denote the validity (respectively,
satisfiability) of a formula F with respect to the theories T and the standard
interpretation of the universal-quantification symbol. In contrast, the judgments
[F ]T and 〈F 〉T (used in the specification of satisfyTheories) do not interpret
quantified formulas, but instead treat each unique outermost quantified formula
as a fresh propositional variable. The judgments [F ]QT and [F ]T (and also 〈F 〉QT
and 〈F 〉T ) coincide on quantifier-free formulas. Furthermore, a formula G that
is QT -satisfiable is also T -satisfiable. That is, for any quantifier-free formula F
and for any formula G:

[F ]T ⇔ [F ]QT (4)
〈F 〉T ⇔ 〈F 〉QT (5)
〈G〉QT ⇒ 〈G〉T (6)

Supporting existential quantifiers (that is, universal quantifiers in negative
positions) is straightforward, since we can replace each bound variable by a fresh
(skolem) constant. For a quantified formula ∀x.F occurring in a negative posi-
tion, we write skolem(x, F ) to denote a fresh variable that is unique for the
quantified formula ∀x.F . We say a monome m is skolem-closed if the informa-
tion obtained by instantiating existentially-quantified formulas in this manner is
already present in m, modulo propositional reasoning. More precisely, we define
skolem-closed(m) to mean that for all formulas of the form ¬∀x.F in m,

[m⇒ ¬F (x← skolem(x, F ))]B

Supporting universal quantifiers is more difficult. Verifun follows a strategy
of heuristic instantiation of universally-quantified formulas. Although heuristic
instantiation is incomplete, our experience with the Simplify theorem prover [9]
has shown that heuristic instantiation is both efficient and sufficiently complete
to be useful in practice [10, 13].

Since different instantiation heuristics may be appropriate in different situ-
ations, we abstract away the instantiation heuristics by assuming that for each
universally-quantified formula ∀x.F in a monome m, the function match(m,x, F )
describes the set of appropriate instantiations of that formula. In particular,
match(m,x, F ) returns a set of substitutions for the bound variable x that de-
termine which instantiations of ∀x.F should be considered.

We define a monome m to be match-closed if the information obtained by
performing all of these matching instantiations is already present in m, modulo
propositional reasoning. More precisely, we define match-closed(m) to mean that
for each quantified formula of the form ∀x.F in m and for each substitution σ
in match(m,x, F ),

[m⇒ σ(F )]B
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function satisfy(Formula F ) : Monome
Returns m where m is either a monome, or the value UNSAT , such that

m = UNSAT ⇒ ¬〈F 〉QT
m 6= UNSAT ⇒ 〈m〉T ∧ [m⇒ F ]B ∧ skolem-closed(m) ∧ match-closed(m)

{
Formula E := true;
while (true) {

invariant Inv : [E]QT
Monome m := satisfyProp(F ∧ E);
if (m = UNSAT ) {

assert q1 : ¬〈F ∧ E〉B
L1 : return UNSAT ;

} else {
assert q2 : [m⇒ F ∧ E]B
Formula R := checkMonome(m);
if (R = SAT ) {

assert q3 : 〈m〉T ∧ skolem-closed(m) ∧ match-closed(m)
L2 : return m;

} else {
assert q4 : [R]QT ∧ ¬[m⇒ R]B

L3 : E := E ∧ R;
}

}
}

}

Fig. 2. The Extended Verifun Satisfier for Quantified Formulas

As we will see, the notion of match-closed monomes allows us to write a spec-
ification of how complete Verifun is on universally-quantified formulas, and to
prove that our implementation meets this specification.

4.2 Specification

The extended Verifun architecture for quantified formulas is described by the
procedure satisfy , whose specification and implementation are shown in Figure 2.
The procedure satisfy takes as input a formula F that may contain quantifiers.
The procedure either determines that F is unsatisfiable with respect to the
theories and the meaning of quantification (that is, ¬〈F 〉QT ) and returns the
special value UNSAT , or it returns a satisfying assignment for F . The satisfying
assignment is a monome m that entails the query by propositional inference
(that is, [m ⇒ F ]B), and that is consistent with the underlying theories (that
is, 〈m〉T ). Note that, since our heuristic instantiation strategy is incomplete, m
may not be satisfiable with respect to the meaning of quantifiers, and so there
is no guarantee that 〈m〉QT . Instead, we specify a partial completeness property
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function checkMonome(Monome m) : Formula
Returns R where R is either a formula, or the value SAT , such that

R = SAT ⇒ 〈m〉T ∧ skolem-closed(m) ∧ match-closed(m)
R 6= SAT ⇒ [R]QT ∧ ¬[m⇒ R]B

{
Formula R := satisfyTheories(m);
if (R 6= SAT ) {

assert q5 : [R]T ∧ ¬[m⇒ R]B
L4 : return R;
}

L5 : if m contains ¬∀x.F such that 〈m ∧ F (x← skolem(x, F ))〉B {
R := ((¬∀x.F )⇒ ¬F (x← skolem(x, F )))
assert q6 : [R]QT ∧ ¬[m⇒ R]B

L6 : return R;
}

L7 : if m contains ∀x.F such that σ ∈ match(m, x, F ) and 〈m ∧ ¬σ(F )〉B {
R := ((∀x.F )⇒ σ(F ))
assert q7 : [R]QT ∧ ¬[m⇒ R]B

L8 : return R;
}
assert q8 : 〈m〉T ∧ skolem-closed(m) ∧ match-closed(m)

L9 : return SAT ;
}

Fig. 3. The procedure checkMonome

for the procedure satisfy by stating that the satisfying assignment m must be
both skolem-closed and match-closed.

4.3 Implementation

In the implementation of the procedure satisfy shown in Figure 2, the expli-
cated formula E is a tautology that propositionally entails not only aspects of
the semantics of the theories T , but also aspects of the semantics of quantified
formulas. The procedure satisfy repeatedly finds a monome m that proposition-
ally implies the conjunction F ∧ E, and calls the procedure checkMonome on
m. The procedure checkMonome (shown in Figure 3) attempts to explicate a
formula refuting m using a sequence of strategies, as described below. First,
checkMonome tries to prove that m is inconsistent with the theories by call-
ing satisfyTheories. If satisfyTheories explicates a proof R that refutes m, then
checkMonome returns that proof, and satisfy conjoins R to E. Since [R⇒ ¬m]B ,
the conjoined formula E ∧ R ensures that the SAT solver will never return the
same truth assignment m on a subsequent loop iteration.

If m is consistent with the theories, the procedure checkMonome checks
whether m is skolem-closed by searching for a formula (¬∀x.F ) in m such that
the instantiation ¬F (x ← skolem(x, F )) is not propositionally implied by m,
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that is:
¬[m⇒ ¬F (x← skolem(x, F ))]B

This reduces to the propositional SAT query 〈m∧F (x← skolem(x, F ))〉B , which
is easily discharged using the SAT solver. (We discuss alternative implementation
techniques in Section 6.)

If an existentially quantified formula is found that satisfies these conditions,
then checkMonome explicates and returns the following instantiation R:

(¬∀x.F )⇒ ¬F (x← skolem(x, F ))

Clearly, R is a tautology (that is, [R]QT ). In addition, R explicates information
that is not present in the monome m, and so m is not a truth assignment for R,
that is, ¬[m⇒ R]B . On subsequent iterations, the SAT solver can leverage this
explicated rule to avoid repeatedly producing the same truth assignment m.

Finally, checkMonome checks whether m contains a universally-quantified
formula ∀x.F that has a matching substitution σ ∈ match(m,x, F ) such that
the instantiation σ(F ) is not propositionally implied by m, that is, ¬[m ⇒
σ(F )]B . Again, the last check reduces to the SAT query 〈m ∧ ¬σ(F )〉B . If such a
formula is found, checkMonome explicates the following instantiation rule, which
communicates part of the meaning of universal quantifiers to the SAT solver,
ensuring that the truth assignment m is never reconsidered on a subsequent
iteration.

If none of the conditions above hold, the monome m is both skolem-closed
and match-closed, and is satisfiable with respect to the theories. The proce-
dure checkMonome reports that m is satisfiable, and the procedure satisfy then
returns m as a satisfying assignment for the original query F .

4.4 Correctness

To show that satisfy implements its specification4, we first observe that correct-
ness of assertions q1 and q2 follows directly from postconditions of satisfyProp,
while correctness of assertions q3 and q4 follows directly from postconditions of
checkMonome. Next, we note that Inv is a loop invariant: it holds initially be-
cause E is initially true. To show that it is preserved by each iteration, we need
to show that [E ∧ R]QT holds before the assignment at label L3 is executed.
But this follows directly from the first conjunct of q4, the inductive hypothesis
[E]QT , and the distributivity of ∧ over [·]QT .

It remains to show that satisfy ’s two postconditions hold at labels L1 and L2,
respectively. The former holds because q1 ∧ Inv holds at label L1, from which
we can derive the postcondition ¬〈F 〉T by using the following result:

¬〈F ∧ E〉B ∧ [E]T ⇒ ¬〈F 〉T
which follows from axioms 2 and 3 and boolean logic. From this, using axiom 6,
the result follows. The remaining proof, that the postcondition

〈m〉T ∧ [m⇒ F ]B ∧ skolem-closed(m) ∧ match-closed(m)
4 Note, however, that the procedure satisfy may not terminate.
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holds at label L2, follows directly from q2, q3 and boolean logic.
To demonstrate that the procedure checkMonome implements its specifica-

tion, we first observe that the assertion q5 follows from the postcondition of
satisfyTheories. We assume that satisfyTheories returns quantifier-free formu-
las, and hence by axiom 4 the property [R]QT also holds at label L4, which
ensures that the return statement at label L4 satisfies the postcondition:

[R]QT ∧ ¬[m⇒ R]B

Next, the assumptions q6 and q7 follow by boolean logic, and the meaning of
quantifiers, and hence the return statements at L6 and L8 also satisfy the post-
condition. Finally, if none of the then branches in checkMonome are taken,
assumption q8 follows from the postcondition of satisfyTheories, the definitions
of skolem-closed and match-closed, and boolean logic, and hence the return state-
ments at label L9 satisfy the postcondition:

〈m〉T ∧ skolem-closed(m) ∧ match-closed(m)

5 Example

In this section, we illustrate our ideas by showing how our approach might work
in determining the satisfiability of the following quantified formula F :

b ≥ 1
∧ b > 0 ⇒ ∀x.(P (x) ∨ ¬∀y.Q(x, y))
∧ ¬P (a)
∧ ∀z.Q(a, z)

For this example, our prover might proceed as follows.

– Suppose the first call to satisfyProp on the formula F returns the monome:

m0 ≡ (b ≥ 1) ∧ ¬(b > 0) ∧ . . .

This monome causes checkMonome to invoke satisfyTheories, which returns
the explicated proof

R0 ≡ (b ≥ 1⇒ b > 0)
– Next, satisfyProp is reinvoked on (F ∧ R0) and returns the monome

m1 ≡ (b ≥ 1) ∧ (b > 0) ∧ (∀x.(P (x) ∨ ¬∀y.Q(x, y))) ∧ . . .

On this monome, satisfyTheories returns SAT , and checkMonome executes
the third if statement, labeled L7. Suppose that the matching routine, trig-
gered by the presence of the atomic formula P (a), returns the substitution
x := a. This results in the instantiation (P (a) ∨ ¬∀y.Q(a, y)) of the quan-
tifier body. Since the negation of this instantiation is not propositionally
inconsistent with the monome, the procedure checkMonome explicates the
following proof

R1 ≡ (∀x.(P (x) ∨ ¬∀y.Q(x, y))) ⇒ (P (a) ∨ ¬∀y.Q(a, y))
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– The next call to satisfyProp on (F ∧ R0 ∧ R1) returns the monome

m2 ≡ ¬∀y.Q(a, y) ∧ m1

Again, satisfyTheories returns SAT , and causes checkMonome to execute
the second if statement, labeled L5. Let K denote the skolem variable
skolem(y,Q(a, y)). Since the check 〈m2 ∧ Q(a,K)〉B is successful, procedure
checkMonome explicates a new proof

R2 ≡ (¬∀y.Q(a, y)) ⇒ ¬Q(a,K)

– The next call to satisfyProp on (F ∧ R0 ∧ R1 ∧ R2) returns a monome

m3 ≡ ¬Q(a,K) ∧ m2

Again, satisfyTheories returns SAT . The condition in the second if state-
ment now fails, since m3 contains ¬Q(a,K). Suppose that the matching rou-
tine, triggered by the presence of Q(a,K), now instantiates the last quantifier
with the instantation z := K, causing the following proof to be explicated
at line L8

R3 ≡ (∀z.Q(a, z)) ⇒ Q(a,K)

– Finally, the next call to satisfyProp on (F ∧ R0 ∧ R1 ∧ R2 ∧ R3) returns
UNSAT , indicating that the original formula was unsatisfiable.

6 Implementation Considerations

In this section, we discuss various implementation issues that are important in
order to improve the performance of our approach.

First, as discussed in section 4.1, we have so far conveniently assumed that
match(m,x, F ) produces all relevant instantations for ∀x.F . In both Verifun
and Simplify, this is achieved by associating with each universally-quantified
formula an associated pattern, where a pattern is a set of terms that contains
all the bound variables5 of the quantifier. The function match(m,x, F ) is then
implemented by searching for all matches (upto equivalence) of this pattern in
the E-graph data structure [17, 9], which represents all equivalences and congru-
ences inferred from m. Patterns may be provided either explicitly, or inferred
heuristically, by examining the syntactic structure of the quantifier body F , as
done by Simplify [9]. In addition, the use of various performance optimizations
(such as fingerprinting and the mod-time and pattern-element optimizations [9])
can yield considerable improvement in the performance of matching. A matching
procedure which implements these heuristics and optimizations can be directly
used in our approach.

5 Though we have not discussed it in this paper, the generalization of our definitions
to quantifiers with more than one bound variable is fairly straightforward.
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Second, note that the guards to the if statements in lines L5 and L7 require
checking whether certain formulas of the form m ∧ P are propositionally satisfi-
able. While this may seem like an expensive check, in practice it is often cheaper,
because modern SAT solvers often support the ability to solve such similar SAT
problems incrementally. Thus, even though we invoke the SAT solver repeatedly
to check the if condition for several quantifier bodies, by incrementally invoking
the SAT solver from the state it reaches after asserting the literals in m, we can
substantially reduce the performance cost of these calls.

A third point to note is that we can also safely weaken the guards in these
two if statements. Since the formula R that is returned is always a tautology,
such a weakening may cause the algorithm to explicate unnecessary proofs, but
it does not introduce unsoundness. One such weakening, which we used in the
first prototype implementation of quantifiers in Verifun, does not invoke the SAT
solver. Instead, it maintains two sets E and A, where E contains the set of all
quantified formulas that have been existentially instantiated (in line L6), and A
contains a set of pairs of the form (quantified formula, substitution) recording
each heuristic instantiation that was returned (in line L8). Using these sets, the
guards in lines L5 and L7 may be weakened as follows:

L5′ : if m contains ¬∀x.F such that ¬∀x.F /∈ E {

L7′ : if m contains ∀x.F such that σ ∈ match(m, x, F ) and (∀x.F, σ) /∈ A {

In addition, sets E and A are updated in the obvious way.
Finally, we note that even the design presented in section 4.3 has the potential

limitation that it may explicate a great many instantiation rules for universally-
quantified formulas. Even instantiation rules that have not proved valuable in
refuting conjectured truth assignments are explicated to the SAT solver, and
these many “useless” rules may seriously degrade the performance of the SAT
solver.

To avoid this problem, we can refine the procedure checkMonome to only
return useful instantiation rules for universally-quantified formulas. The refined
implementation replaces the last if statement of Figure 3 with the following code:

FormulaSet S := ∅;
Monome m′ := m;
while (m′ contains ∀x.F such that σ ∈ match(m′, x, F ) and 〈m′ ∧ ¬σ(F )〉B ) {

invariant Inv : [m′ ⇒ (m ∧ (∧S))]B ∧ (〈m′〉B ⇔ 〈m ∧ (∧S)〉B )
S := S ∪ { (∀x.F )⇒ σ(F ) };
m′ := satisfyProp(m′ ∧ σ(F ));
if (m′ = UNSAT ) {

return getUnsatCore(m, S);
}

}

Instead of returning any applicable instantiation rule, the new implementa-
tion records a set S of applicable instantiation rules, and attempts to extend
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the monome m to a monome m′ that is a satisfying assignment for (m ∧ ( ∧
S)). We use the notation ( ∧S) to denote the conjunction of all formulas in
S. If the set S become sufficient to refute the current truth assignment m,
then the procedure getUnsatCore(m,S) is called, which has the specification:

function getUnsatCore(Monome m, FormulaSet S) : FormulaSet

Requires ¬〈m ∧ (∧S)〉B
Returns a formula set S′ ⊆ S such that ¬〈m ∧ (∧S′)〉B

The procedure getUnsatCore(m,S) computes and returns a small subset S′ of
S that is still sufficient to refute m. This procedure can be easily implemented
by leveraging corresponding functionality in recent SAT solvers for extracting a
small unsatisfiable core of a propositional formula [21]. Having thus determined a
subset S′ of instantiation rules that are actually useful in refuting m, this collec-
tion of useful instantiation rules is then returned as the result of checkMonome.

7 Related Work

The idea of theorem proving by solving a sequence of incrementally growing SAT
problems occurs as early as the 1960 Davis and Putnam paper [7]. However,
while their exhaustive enumeration algorithm is, in principle, complete for first-
order predicate calculus, in practice it is likely to get overwhelmed by numerous
irrelevant instantiations of quantified formulas.

The idea of extending decision procedures to generate proofs has been ex-
plored by George Necula in the context of his work on proof-carrying-code [15,
16]. However, our concerns are quite different: we are interested in proof-generation
in order to produce a sufficient set of clauses to rule out satisfying assignments
that are inconsistent with the underlying theory.

More similar in nature to our work is the Cooperating Validity Checker
(CVC) [3], which also uses explicated clauses in order to control the boolean
search. Recent work by de Moura and Ruess [8] also studies the impact of proof-
explicating decision procedures in pruning the search space. Other systems em-
ploying a form of lazy explication include Math-SAT [1], which is specialized
to the theory of linear arithmetic, and Zapato [2], which is based on the Ver-
ifun algorithm, but uses a decision procedure due to Harvey and Stuckey for
solving a restricted class of arithmetic constraints. All of these systems focus on
quantifier-free formulas. We build on this work by extending these ideas to also
support quantified formulas via heuristic instantiation.

Verifun produces propositional projections of theory-specific facts lazily, on
the basis of its actual use of those facts in refuting proposed satisfying assign-
ments. An alternative approach is to eagerly generate all theory-specific facts
that might possibly be needed for testing a particular query in a pre-processing
phase. This eager approach has been applied by Bryant, German, and Velev [4]
to the domain of equality with uninterpreted function symbols and arrays, and
extended by Bryant, Lahiri and Seshia [6] to incorporate counter arithmetic. Ofer
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Strichman [19] has investigated the eager projection to SAT for Presburger and
linear arithmetic. For certain domains, the eager approach has achieved impres-
sive performance. For richer theories and in particular for problems involving
quantification, it is unclear whether it will be possible to generate all neces-
sary theory-specific facts at the outset without also including excessively-many
irrelevant facts that would swamp the SAT solver.

8 Conclusion

Previous research [12, 3, 8, 2] has helped make the case that leveraging the use
of fast SAT solvers and proof-generating decision procedures is a promising di-
rection for achieving increased scalability and performance in theorem provers.
However, so far, this work has focused only on quantifier-free theories. In this pa-
per, we have described how to extend the approach to include formulas with uni-
versal and existential quantifiers, including arbitrarily nested quantifiers. Such
quantified formulas are common in program verification [17, 10, 13, 11]. We have
sketched a correctness proof of our algorithm, shown how it can be made as com-
plete as a prover such as Simplify [9], and discussed several key implementation
issues.
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