
Comprehension of spacecraft telemetry
using hierarchical specifications of behavior?

Klaus Havelund and Rajeev Joshi

Jet Propulsion Laboratory
California Institute of Technology

California, USA

Abstract. A key challenge in operating remote spacecraft is that ground
operators must rely on the limited visibility available through spacecraft
telemetry in order to assess spacecraft health and operational status. We
describe a tool for processing spacecraft telemetry that allows ground
operators to impose structure on received telemetry in order to achieve a
better comprehension of system state. A key element of our approach is
the design of a domain-specific language that allows operators to express
models of expected system behavior using partial specifications. The lan-
guage allows behavior specifications with data fields, similar to other re-
cent runtime verification systems. What is notable about our approach
is the ability to develop hierarchical specifications of behavior. The lan-
guage is implemented as an internal DSL in the Scala programming
language that synthesizes rules from patterns of specification behavior.
The rules are automatically applied to received telemetry and the in-
ferred behaviors are available to ground operators using a visualization
interface that makes it easier to understand and track spacecraft state.
We describe initial results from applying our tool to telemetry received
from the Curiosity rover currently roving the surface of Mars, where the
visualizations are being used to trend subsystem behaviors, in order to
identify potential problems before they happen. However, the technology
is completely general and can be applied to any system that generates
telemetry such as event logs.

1 Introduction

One of the key challenges in operating remote spacecraft is that ground opera-
tors must rely on limited telemetry visible on the ground in order to assess the
health and operational status of the spacecraft. Such telemetry typically consists
of a log of system events and sensor measurements (such as battery voltage or
probe temperature) which, for the purposes of this paper, may be viewed as a
sequence of timestamped records with named fields. Because this telemetry com-
prises essentially all the knowledge that ground operators have about a given

? The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

spacecraft, processing this telemetry in a timely manner is of utmost importance
to any mission. However, as spacecraft have become more autonomous and ca-
pable, and improvements in radio performance have resulted in greater downlink
bandwidth, the resulting volume and complexity of the telemetry requires more
automated processing tools so that any potential problems are diagnosed quickly
and accurately. Unfortunately, currently such tools are developed by ground op-
erators in an ad-hoc manner, typically using libraries developed by various sub-
system teams that mine the telemetry to infer summaries that are of interest to
that subsystem. These summaries are typically presented to ground operators
using various visualization interfaces. While these tools have been overall quite
effective, and the domain knowledge encoded in these libraries has led to many
problems being identified early, the current approach of relying on ad-hoc scripts
also makes the resulting tools fragile, hard for new team members to understand,
and difficult to maintain. The maintainability issue is especially important for
long-running missions that are expected to last many years.

To address this problem, this paper presents a declarative notation for ex-
pressing domain-specific knowledge about telemetry structure. In our formalism,
the behavior of spacecraft subsystems may be expressed in terms of behaviors,
in a language that resembles regular expressions, but with support for conjunc-
tion and data arguments to nonterminals. A key feature of our notation is that
behaviors may be nested, since in our experience, most subsystems are usu-
ally viewed as a set of (possibly interrelated) hierarchical behaviors, and often
viewed using visualization interfaces that allow behaviors of interest to be ex-
plored interactively. We demonstrate our approach in practice by showing how
it is being applied to telemetry received from the Curiosity rover [3] currently
on Mars. However, although applied to spacecraft operation, the techniques are
fully general, and can be used for analysis of any form of event logs produced
by a software system.

There has been much previous work in processing telemetry event logs in the
field of runtime verification (RV), typically checking logs against user provided
specifications, often expressed in some form of temporal logic. Such analysis may
take place pre-deployment, as the system is being developed, or post-deployment,
during operation. Orthogonally, the monitoring may be done online, processing
telemetry on-board during execution, or offline by analyzing logs. We are con-
cerned with post-deployment offline trace analysis. Most previous work, how-
ever, focuses on checking if a given event log satisfies a given specification or not
(sometimes extending the Boolean domain with extra values to 3 or 4-valued
logics, indicating grade of satisfaction). In our experience, coming up with for-
mally verifiable properties is difficult in practice, especially for complex missions
where design requirements were not in a formal notation to begin with. Thus
our focus is more on providing a framework for performing log comprehension.
This form of log comprehension can often be useful in identifying problems not
easily formalized, but can also serve as a stepping stone to eventually writing
(traditional) formal properties that may be checked for satisfaction.

To provide flexibility in expressing varied subsystem models, we have imple-
mented our notation as an internal DSL (Domain-Specific Language), essentially
an API, in the Scala programming language. Scala offers language constructs
that makes definition of such APIs have the appearance of DSLs. Specifically
we use Scala’s implicit functions to define concrete syntax, and case classes to
define abstract syntax. The resulting DSL is largely a so-called deep embedding,
in contrast to a shallow embedding. In a deep embedding a particular program
in the DSL is completely defined by an abstract syntax tree, which can be pro-
cessed as an internal data structure. In contrast, in a shallow embedding host
language constructs are made part of the DSL. A deep embedding makes it eas-
ier to analyze DSL programs. As we shall see, however, we do allow the DSL to
contain arbitrary Scala code in limited positions, hence our approach is a mix
of deep and shallow embedding.

We implement our DSL using the rule-based LogFire system [17], which is
itself an internal Scala DSL. Rule-based systems, which have been extensively
studied within the artificial intelligence (AI) community, allow formulation of
rules of the form:

condition1, . . . , conditionn ⇒ action

The state of a rule-system can abstractly be considered as consisting of a set
of facts, referred to as the fact memory, where a fact is a mapping from field
names to values. A condition in a rule’s left-hand side can check for the presence
or absence of a particular fact. A left-hand side matching against the fact mem-
ory usually requires unification of variables occurring in conditions. In case all
conditions on a rule’s left-hand side match (become true), the right-hand side
action is executed, which can be any Scala code, including adding and deleting
facts, or generating error messages. LogFire is an implementation of the Rete
algorithm [13] used in many AI rule systems.

The rule formalism, although very natural and expressive, turns out to be
slightly verbose for writing log properties. The core problem can be illustrated by
an example. Assume that one wants to monitor that the events E1 and E2 occur
in that order. A rule system would have to explicitly create an intermediate fact
E1Seen representing the fact that E1 has occurred. The issue is similar to that
of state machines where all states must be explicitly defined. Regular expressions
and temporal logics provide a solution to this problem. We here show a regular
expression-like formalism which (i) makes this more convenient, and (ii) which
allows for abstraction as discussed above. The DSL we present is defined as
patterns that are translated to rules, in a similar manner as discussed in [17].

The paper is organized as follows. Section 2 outlines related work. Section
3 introduces briefly the rule-based system LogFire, and outlines the inconve-
niences in using this solution for this problem. Section 4 introduces the new
DSL and its translation to rules. Section 5 presents the application to a space-
craft scenario, illustrating visualization of event abstractions. Finally, Section 6
concludes the paper.

2 Related Work

Several systems have been developed over the last decade for supporting moni-
toring of parameterized events. These systems support various formalisms, such
as state machines [14, 19, 11, 7, 5], regular expressions [4, 19], variations over the
µ-calculus [6], temporal logics [6, 19, 7, 15, 9, 10, 12], grammars [19], and rule-
based systems [8, 17]. Some of these systems focus on being efficient. However,
this efficiency is typically achieved at the price of some lack of expressiveness,
as discussed in [5]. Our previous research has focused on more expressive for-
malisms, including rule-based systems, such as Ruler [8] and more recently
LogFire [17]. Rule-based systems in general provide a rich formalism, which
can be used to encode the kind of abstraction needed for our behavior defi-
nitions. LogFire is based on the Rete algorithm [13], which is the basis for
many rule-based systems developed over time, including for example Drools
[2]. Standard rule systems usually enable processing of facts, which have a life
time. In contrast, LogFire in addition implements events, which are instanta-
neous, and which are needed for the kind of application presented in this paper.
Drools supports a notion of events, which are facts with a limited life time.
These events, however, are not as short-lived as possibly desirable in runtime
verification. The event concept in Drools is inspired by the concept of Com-
plex Event Processing (CEP), described by David Luckham in [18]. This concept
is related to our approach using hierarchical behaviors. CEP is concerned with
processing streams of events in (near) real time, where the main focus is on the
correlation and composition of atomic events into complex (compound) events.
TraceContract [7] and Daut [16] are internal Scala DSLs for trace analy-
sis based on state machines. They allow for multi-transitions without explicitly
naming the intermediate states, which corresponds to sequential composition of
events. MopBox [11], and its more efficient successor prm4j, are Java APIs for
a set of algorithms implementing Mop’s [19] functionality.

3 The LogFire Rule Engine

As already mentioned, LogFire is a Scala API for writing rule-based programs
in a manner that has the appearance of a DSL. It was originally created as a
study of how the Rete algorithm could be used for runtime verification purposes,
where the main goal is to check event traces against formalized specifications,
and emit verdicts in a Boolean domain, stating whether the event stream satisfies
the specification or not. In the following, we shall first illustrate the originally
intended application, and in the subsequent sub-section we shall illustrate its use
for abstraction, which is the topic of this paper. We then suggest that a more
convenient solution is desirable for this objective.

3.1 LogFire used for Verification

Consider a system that emits two kinds of events: E1(clk → t1) and E2(clk →
t2), each being a named record (names are E1 and E2) with a field clk that is

class Verifier extends Monitor {
"v1" −− ’E1(’clk → ’t1) 7−→ insert(’E1Seen(’t1))

"v2" −− ’E2(’clk → ’t2) & not(’E1Seen(’t1)) 7−→ fail()

"v3" −− ’E2(’clk → ’t2) & ’E1Seen(’t1) 7−→ {
if (’ t2−’t1 > 5000) fail ()

}
}

Fig. 1. A LogFire verifier

mapped to a time stamp ti indicating the time when these events were generated.
Suppose we want to enforce that E2 can only occur after E1, and furthermore, if
E2 occurs, it has to occur within 5 seconds of the occurrence of E1. This property
is shown in Figure 1. The main component of LogFire is the trait1 Monitor,
which any user-defined monitor must extend to get access to the constants and
methods provided by the rule DSL. The events E1 and E2 are short-lived in-
stantaneous observations about the system being monitored, those submitted
to the monitor. In contrast, facts, in this case E1Seen, are long-lived pieces of
information stored in the fact memory of the rule system, generated and deleted
explicitly by the rules. In the monitor above the fact E1Seen(t1) is used to rep-
resent the fact that the event E1(clk → t1) has been seen. The monitor contains
three rules, named v1, v2 and v3. Each rule has the form:

name -- condition1 & . . .& conditionn 7−→ action

Event and fact names, as well as parameter names are values of the Scala
type Symbol, which contains quoted identifiers. The need for representing user-
defined names as symbols is a consequence of the fact that LogFire is a deep
embedding (we don’t use Scala’s names). Events and facts can have arguments
specified in one of two ways: using positional notation or using map notation.
Positional notation means just listing arguments as a list of patterns (identi-
fiers or literals). In our example facts are represented using positional notation.
The positional notation is convenient if events/facts carry few arguments. Map
notation means considering the events/facts as being maps from field names to
values. In our example event patterns are shown using map notation, assuming
each event has a time stamp named ’clk. When using map notation only fields
relevant for the rule need be mentioned. An action is any Scala statement, that
specifically for example can add or delete facts, or call failure methods.

1 A trait in Scala is a module concept closely related to the notion of an abstract
class, as for example found in Java.

The rules are to be read as follows. Rule v1 states that when an E1 event is
observed, a fact, E1Seen is created to record this. Rule v2 states that an error is
generated if an E2 event is observed, but no E1 event has been observed before
that. Finally, rule v3 states that in the case an E1 event and subsequently an
E2 event is observed, the time difference must be within 5 seconds. A monitor
can be applied as shown in Figure 2, which also shows an example of an error
trace produced. Each entry in the error trace shows the number of the event,
the event, the fact that it causes to be generated, and the rule that triggers. In
this case the 5 second requirement is violated.

object ApplyMonitor {
def main(args: Array[String]) {
val m = new Verifier
m.addMapEvent(’E1)(’clk → 1023)
m.addMapEvent(’E3)(’clk → 3239)
m.addMapEvent(’E2)(’clk → 7008)
}
}
...

∗∗∗ error :

[1] ’E1(’clk→ 1023) =⇒ ’E1Seen(1023)
rule : "v1" −− ’E1(’clk→ ’t1) 7−→ {...}

[3] ’E2(’clk→ 7008) =⇒ ’Fail("ERROR")
rule : "v3" −− ’E2(’clk→ ’t2) & ’E1Seen(’t1) 7−→ {...}

Fig. 2. Applying a LogFire verifier

3.2 LogFire used for Abstraction

In this sub-section we shall illustrate how LogFire may be used to model the
hierarchical behaviors of interest in our application. We consider a scenario with
a top-level behavior (denoted alpha) that consists of an inner behavior (denoted
beta) in parallel with a single event E3. The behavior beta in turn consists of
two events E1 and E2 that must occur in that order. Denoting the three atomic
events as E1(clk → t1), E2(clk → t2), and E3(clk → t3), we want to record two
facts: that E2 occurs after E1 is to be recorded as an occurrence of beta(t1, t2),
and that E3 occurs either before or after (that is: in parallel with) beta(t1, t2)
is to be recorded as an occurrence of alpha(t1, t2, t3). The resulting monitor is
shown in Figure 3.

class Abstracter extends Monitor {
"a1" −− ’E1(’clk → ’t1) 7−→ insert(’E1Seen(’t1))

"a2" −− ’E1Seen(’t1) & ’E2(’clk → ’t2) 7−→ {
remove(’E1Seen);
insert (’beta(’ t1, ’ t2))

}

"a3" −− ’E3(’clk → ’t3) 7−→ insert(’E3Seen(’t3))

"a4" −− ’beta(’t1, ’ t2) & ’E3Seen(’t3) 7−→ {
remove(’E3Seen);
insert (’ alpha (’ t1, ’ t2 , ’ t3))

}
}

Fig. 3. A LogFire abstracter

The monitor contains four rules. The first rule, a1, records when an E1(clk →
t1) event is seen. Rule r2 records a beta(t1, t2) fact when an E2(clk → t2) event
is seen after an E1(clk → t1) event. It also removes the intermediate event
recording that E1 was seen, in order to not clutter the set of facts generated.
Rule a3 records when an E3(clk → t3) event is seen, and finally rule a4 creates the
alpha(t1, t2, t3) fact. When applying the abstracter to the same event sequence
as shown in Figure 2, instead of an error trace, we obtain a set of generated
facts, as shown in Figure 4.

The main observation to be made, about this specification, as well as the
verifier in Figure 1, is that it is inconvenient that we have to add (and delete)
intermediate facts such as E1Seen and E3Seen explicitly, which makes these
rules cumbersome to write and maintain. To avoid this problem, in the next
section, we introduce notation that allows hierarchical events to be described
more directly, in a form similar to the way one writes regular expressions, but
with support for conjunctive composition and event parameters.

4 A DSL for Log Abstraction

We start by presenting our notation first in an idealized form, showing how the
LogFire abstracter presented in the previous section can be written, as well
as an idealized grammar. Subsequently we show how our notation is embedded
as an internal Scala DSL, and we briefly sketch how our DSL implementation
automatically generates LogFire rules from such descriptions.

object ApplyMonitor {
def main(args: Array[String]) {
val m = new Abstracter
m.addMapEvent(’E1)(’clk → 1023)
m.addMapEvent(’E3)(’clk → 3239)
m.addMapEvent(’E2)(’clk → 7008)
}
}
...

−−− facts: −−−−−−−
’beta(1023,7008)
’alpha(1023,7008,3239)
−−−−−−−−−−−−−−

Fig. 4. Applying a LogFire abstracter

4.1 A More Convenient Notation for Abstraction

Our proposed idealized syntax for the example shown in Figure 3 is shown in
Figure 5. The model contains two so-called behaviors, one generating beta(t1, t2)
facts, and one generating alpha(t1, t2, t3) facts. The first rule shows an example
of sequential composition, and reads as follows: when an E1(clk → t1) event is
observed followed by an E2(clk → t2) event, a beta(t1, t2) fact is generated. The
second behavior shows an example of parallel composition, and reads: when a
beta(t1, t2) facts has been generated at some point, and a E3(clk → t3) event
has been observed at some point, an alpha(t1, t2, t3) is generated, the ordering
is unimportant. The fact generated, occurring to the left of the symbol |==, is
referred to as the behavior head. The expression occurring on the right of the
symbol |== is referred to as the behavior expression. Such behavior definitions
have some resemblance to Prolog, but differ by being focused on events, and
by supporting sequential composition as well as choice.

beta(t1, t2) |== E1(clk -> t1) >> E2(clk -> t2)

alpha(t1, t2, t3) |== beta(t1, t2) && E3(clk -> t3)

Fig. 5. Abstracter using idealized syntax

The idealized grammar for our language is shown in Figure 6, using a form
of extended BNF, where 〈N〉 denotes a non-terminal, 〈N〉 ::= . . . defines the
non-terminal 〈N〉, S∗ denotes zero or more occurrences of S, S∗,∗ denotes zero
or more occurrences of S separated by commas (’,’), S | T denotes the choice
between S and T , and finally an expression in single quotes (such as ‘�’) de-
notes a terminal symbol. A 〈behaviorModel〉 is a sequence of definitions, each
being either a 〈variableDef〉 or a 〈behaviorDef〉. We already saw examples of be-
havior definitions in Figure 5. Variable definitions allow us to define convenient
abbreviations for expressions which simplify the definition of a behavior expres-
sion and make it more readable. A 〈behaviorExp〉 can have one of six forms.
We have already seen examples of sequential (�) and parallel (&&) composition.
In addition behavior expressions can be composed with choice (++), meaning:
one of the two sub-behaviors are observed. Behavior expressions can be grouped
with parentheses. At the atomic level we distinguish between events observed
and facts generated. They differ in two ways: event names are in all capital, and
the arguments are given using map notation (see page 5), mapping field iden-
tifiers to identifiers representing their value. Fact names cannot be all capital,
and arguments are provided in positional style.

〈behaviorModel〉 ::= (〈variableDef 〉 | 〈behaviorDef 〉)*

〈variableDef 〉 ::= 〈id〉 ‘:=’ 〈expr〉

〈behaviorDef 〉 ::= 〈name〉 ‘(’ 〈id〉*,* ‘)’ ‘|=’ 〈behaviorExp〉

〈behaviorExp〉 ::= 〈behaviorExp〉 ‘�’ 〈behaviorExp〉
| 〈behaviorExp〉 ‘&&’ 〈behaviorExp〉
| 〈behaviorExp〉 ‘++’ 〈behaviorExp〉
| ‘(’ 〈behaviorExp〉 ‘)’
| 〈event〉
| 〈fact〉

〈fact〉 ::= 〈identifier〉 ‘(’ 〈id〉*,* ‘)’

〈event〉 ::= 〈identifier〉 ‘(’ 〈binding〉*,* ‘)’

〈binding〉 ::= 〈id〉 ‘→’ 〈id〉

Fig. 6. Idealized grammar for abstracter DSL

4.2 Embedding as an Internal DSL in Scala

A variant of the idealized example shown in Figure 5, formalized in our internal
Scala DSL, is shown in Figure 7. We have augmented the example with two

variable definitions, one defining the variable ′min as the minimal value to the
two time stamps t1 and t3, and one defining the variable ′max as the maximal
value to the two time stamps t2 and t3. These variables will be computed for each
alpha fact generated, representing the time interval within which all important
events occurred.

trait Example extends Abstracter {
’tmin := { Math.min(’t1.toDouble, ’ t3 .toDouble) }
’tmax := { Math.max(’t2.toDouble, ’t3.toDouble) }

’beta(’ t1, ’ t2) |= ’E1(’clk → ’ t1) � ’E2(’clk → ’ t2)

’alpha (’ tmin, ’tmax) |= ’beta(’ t1, ’ t2) && ’E3(’clk → ’ t3)
}

Fig. 7. Abstracter in Scala DSL

As can be observed, the syntax has the same look and feel as the idealized
syntax presented earlier. This is achieved by using some of Scala’s features for
defining domain-specific languages, including implicit functions, possibility to
define methods using non-alphanumeric symbols, and the possibility of leaving
out dots and parentheses in calls of methods on objects. Generally, implicit func-
tions automatically convert values of the argument type into values of the result
type as follows. Whenever a Scala expression fails to type check, the Scala
compiler will consult the implicit functions in scope and determine whether the
application of a such will make the expression type check, and in this case the
compiler will insert an application of the function (there can be no more than one
such implicit conversion function, otherwise the Scala compiler will complain).

This is illustrated with the Abstracter trait in Figure 8, shown in part,
that behavior models extend. Consider the rule for generating ′beta(′t1,

′ t2) in
Figure 7. The Scala compiler fails to make meaning out of this definition for
a number of reasons. First of all, symbols like ′beta are being applied as if they
were functions, and methods |= and � are being applied to objects on which
they are not defined. The compiler searches the implicit functions, and finds
that S will lift a symbol to an object that defines an apply method, which when
applied generates a Fact object. Furthermore, the compiler finds that the implicit
function F lifts such a Fact object to an object that defines a |= method, which
as argument takes a behavior expression. The behavior expression itself likewise
is composed by calling the method� on the firstly created behavior expression,
without dot notation. When all implicit function calls and dots and parentheses
have been inserted, the definition is equivalent to the following.

trait Abstracter {
...
implicit def S(s: Symbol) = new {
def apply(args : Any∗): Fact = Fact(s, args . toList)
}

implicit def F(lhs : Fact) = new {
def |=(rhs : BehExp) = ruleGen.generate(rhs, lhs)
}
...
trait BehExp {
def �(n: BehExp): BehExp = SeqBehExp(this, n)
def &&(n: BehExp): BehExp = ParBehExp(this, n)
def ++(n: BehExp): BehExp = ChoBehExp(this, n)
...

}
...

}

Fig. 8. Definition of a DSL

F(S(’beta).apply (’ t1, ’ t2)). |=(
(S(’E1).apply (’ clk → ’ t1)).�(S(’E2).apply (’ clk → ’ t2)))

4.3 Rule Generation with Scala

The synthesized method call creates an abstract syntax tree, upon which a
method is finally called, which generates LogFire rules. We shall not illustrate
this in detail, but only outline the general idea. Figure 9 illustrates the method,
mkParRule, that generates rules from a parallel composition of behavior ex-
pressions. The method takes four parameters: pre, which is a pre-condition, a
fact that has to occur before the sub-behaviors of the parallel composition will
be observed. The two sub-behaviors a and b, being arguments to the� operator,
and finally a post condition: a fact that is generated when the two sub-behaviors
have been observed. Two intermediate facts P1 and P2 are first generated. Note
how the parameters coming from the pre-condition are carried over such that
generated facts accumulate all parameters seen so far. Rules for the two subex-
pressions a and b are subsequently generated, inheriting the pre-condition, and
with respectively P1 and P2 as post-conditions: these facts are generated once
the sub-behaviors have been observed. Finally, the main rule for parallel compo-
sition is generated, using the LogFire DSL. It gets an internal name generated
by newRuleId(), and triggers once P1 and P2 have occurred, with the proper
parameters. As a result the post-condition fact of the parallel composition is

generated and the intermediate facts are removed. The rules generated are very
similar to the rules shown in Figure 3.

trait BehaviorMonitor extends Monitor {
...
def mkParRule(pre: Fact, a: BehExp, b: BehExp, post: Fact) = {
val P1 = new Fact(mkSym("par"), params(pre) ⊕ params(a))
val P2 = new Fact(mkSym("par"), params(pre) ⊕ params(b))

generate(pre , a, P1)
generate(pre , b, P2)

newRuleId() −− P1.s(params(P1): ∗) & P2.s(params(P2): ∗) 7−→ {
insert (post. s(params(post): ∗)
remove(P1.s)
remove(P2.s)
}
}
...

}

Fig. 9. Synthesis of LogFire rules from a parallel behavior expression

5 Application: Mars-Earth Communication Sessions

In this section, we briefly describe how our notation is applied to analyze teleme-
try received from the Curiosity rover on Mars. In particular, we describe how
we process telemetry related to the rover’s direct communication sessions with
Earth. A communication session with Earth consists of two behaviors that hap-
pen in parallel: a tracking behavior that moves the high-gain antenna to point
towards the Earth and starts tracking to compensate for Mars’s rotation, and
a configuration behavior that turns on and configures the radios to communi-
cate with the deep space network back on Earth. Since the Mars-Earth distance
varies over time, this requires compensating for variable one-way light time, to
ensure that the rover antenna is pointed and the radio ready when the signal
from Earth arrives at Mars. Because communication is a critical behavior for
the spacecraft, the operations team carefully monitors telemetry received from
the rover to ensure adequate margins are being maintained for the signal arrival
at Mars.

09:23:10 WINDOW_BEGINS("W25211", "HGA")
09:23:16 HGA_START_TRACK
09:23:18 XBAND_CONFIG("RECEIVE_ONLY")
09:23:30 HGA_EARTH_ACQUIRE
09:29:59 START_COMM
09:59:11 STOP_COMM
09:59:12 HGA_STOP_TRACK
09:59:27 WINDOW_CLEANUP

10:04:59 WINDOW_BEGINS("W60002", "HGA")
10:05:05 HGA_START_TRACK
10:05:06 XBAND_CONFIG("CARRIER_ONLY_2")
10:05:21 HGA_EARTH_ACQUIRE
10:07:03 START_COMM
10:16:46 STOP_COMM
10:16:48 HGA_STOP_TRACK
10:17:04 WINDOW_CLEANUP

Fig. 10. Sample event log from a communication session

Figure 10 shows a sample event log from a typical communication session2.
Each window has an assigned unique identifier and a configuration parameter.
As shown in the figure, our sample log consists of two back-to-back communica-
tion sessions performed on the rover. The first session (with identifier W25211)
is configured as a RECEIVE ONLY window and is used to uplink commands to
the rover. One of the commands uplinked adds a second comm session (with
identifier W60002) that is configured as CARRIER ONLY and is used to send a
‘beep’ to Earth indicating successful receipt of commands from the first ses-
sion. As shown in the figure, each session is bracketed by two events (named
WINDOW BEGINS and WINDOW CLEANUP), and internally consists of two parallel
behaviors: a configuration behavior that turns on the telecommunication hard-
ware and configures it for communication, and a tracking behavior that points
and tracks the high-gain antenna. The configuration behavior consists of three
events: XBAND CONFIG, indicating the start of radio configuration, START COMM,
indicating that the radio is ready to communicate, and STOP COMM, indicating
that the radio is being turned off. The tracking behavior also consists of three
events: the HGA START TRACK event, indicating that pointing has commenced,
the HGA EARTH ACQUIRE event, indicating that the antenna is pointed towards
Earth, and the HGA STOP TRACK event, indicating that the antenna is ter-
minating the tracking operation. As shown, each log event has an associated
timestamp, along with optional arguments that provide additional information
(such as the exact configuration used for the radio).

Figure 11 shows the behavior model for such a communication session in our
notation. As shown in the figure, we define a Scala trait called CommSession

2 In the interests of readability, and to comply with guidelines about sharing telemetry
details, we have omitted various technical details about radio configurations, and
modified times and arguments from the original values.

trait CommSession extends Abstracter {
’wid := { getArg(’wargs, 0) }
’wtype := { getArg(’wargs, 1) }
’ session (’wid, ’wtype, ’tws, ’twe, ’ tts) |=

(’EVR(’id → "WINDOW_BEGINS", ’lmst → ’tws, ’ args → ’wargs)
� (’ config (’ ckind, ’ tcs , ’ tas , ’ tce) && ’ track (’ tts , ’ tte))
� ’EVR(’id → "WINDOW_CLEANUP", ’lmst → ’twe)
)

’kind := { getArg(’ cargs , 0) }
’ config (’ kind, ’ tcs , ’ tas , ’ tce) |=

(’EVR(’id → "XBAND_CONFIG", ’lmst → ’tcs , ’ args → ’ cargs)
� ’EVR(’id → "START_COMM", ’ lmst → ’ tas)
� ’EVR(’id → "STOP_COMM", ’ lmst → ’ tce)
)

’ track (’ tts , ’tacq, ’ tte) |=
(’EVR(’id → "HGA_START_TRACK", ’lmst → ’tts)
� ’EVR(’id → "HGA_EARTH_ACQUIRE", ’lmst → ’tacq)
� ’EVR(’id → "HGA_STOP_TRACK", ’lmst → ’ tte)
)

}

Fig. 11. The model for a communication session in our notation

that extends the Abstracter trait defined in the previous Section 4, Figure 8.
Nested within a CommSession is a parallel composition of the config and track
behaviors, each of which is a sequential composition of the three log events de-
scribed above. To extract event times, we rely on a Scala library that processes
spacecraft event logs and generates primitive LogFire events (named EVR)
that contain a map with a timestamp (denoted by key lmst) and optional event
arguments (denoted by key args), which can be recovered using the getArg library
function.

After the model has been interpreted, the resulting LogFire rules generated
may be used to process the event log shown above. The resulting nested struc-
ture is then saved in a web-readable format and processed by visualization tools,
developed with D3 [1], resulting in the display shown in figure 12, which is inte-
grated into an online dashboard used by the operations team. The figure shows
the two sessions captured, composed sequentially, identified by W25211 and
W60002. Each session in turn contains a configuration behavior and a track-
ing behavior, shown on top of each other, and each divided into two sections
corresponding to the three events that define them. The visualization capabil-
ity is crucial for presenting the hierarchical abstractions extracted by the tool

Fig. 12. Visualization of the two communication sessions from Figure 10

from the telemetry. In addition to communication sessions, we have also applied
our notation for writing models for other rover subsystems, including behav-
iors describing the boot timeline, and certain behaviors involving on-board data
management.

6 Conclusion and Future Work

We have described a notation for expressing domain-specific knowledge about
subsystem behaviors that can be used for writing hierarchical models of teleme-
try streams (logs). These models are written using a Scala API that provides a
great deal of flexibility. The formalism supports the following concepts: events,
hierarchical abstraction, sequential, conjunctive and disjunctive composition,
and allows users to write partial specifications that ignore events not of interest.
The result of an analysis is a set of facts, rather than a boolean verdict. This al-
lows existing models written in ad-hoc scripting languages to be easily expressed
in our notation. The models are translated into a set of rules that can be used
by the LogFire rule-based engine to automatically process telemetry received
on the ground, allowing higher-level patterns to be matched and presented to
ground operators. We have described how our method is applied to telemetry
being received from the Curiosity rover, as part of an ongoing effort to build a
system-wide dashboard for monitoring and analyzing spacecraft state. We are
currently working on applying our methods to generate behavior models auto-
matically from the hierarchical plans that are used to schedule rover activities
every day. These models will then be applied to highlight discrepancies between
predicted and actual rover activities. An interesting direction of research is to
identify events that do not match any of the planned behaviors, since such events
are often indicative of anomalous or unexpected behavior.

References

1. D3 website. http://d3js.org.

2. Drools website. http://www.jboss.org/drools.
3. Mars Science Laboratory (MSL) mission website. http://mars.jpl.nasa.gov/msl.
4. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,

O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding trace matching with
free variables to AspectJ. In OOPSLA’05. ACM Press, 2005.

5. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard. Quantified
Event Automata - towards expressive and efficient runtime monitors. In 18th
International Symposium on Formal Methods (FM’12), Paris, France, August 27-
31, 2012. Proceedings, volume 7436 of LNCS. Springer, 2012.

6. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

7. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
In 17th International Symposium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

8. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

9. D. A. Basin, F. Klaedtke, and S. Müller. Policy monitoring in first-order temporal
logic. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, Proceed-
ings, volume 6174 of LNCS, pages 1–18. Springer, 2010.

10. A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order mon-
itoring. In Runtime Verification - 4th Int. Conference, RV’13, Rennes, France,
September 24-27, 2013. Proceedings, volume 8174 of LNCS, pages 59–75. Springer,
2013.

11. E. Bodden. MOPBox: A library approach to runtime verification. In Runtime
Verification - 2nd Int. Conference, RV’11, San Francisco, USA, September 27-30,
2011. Proceedings, volume 7186 of LNCS, pages 365–369. Springer, 2011.

12. N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. In E. Ábrahám
and K. Havelund, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 20th International Conference, TACAS 2014, Grenoble, France, April
7-11, 2014. Proceedings, volume 8413 of LNCS, pages 341–356. Springer, 2014.

13. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

14. J. Goubault-Larrecq and J. Olivain. A smell of ORCHIDS. In Proc. of the 8th Int.
Workshop on Runtime Verification (RV’08), volume 5289 of LNCS, pages 1–20,
Budapest, Hungary, 2008. Springer.

15. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing, 5(2):192–206, 2012.

16. K. Havelund. Data automata in Scala. In M. Leucker and J. Wang, editors,
8th International Symposium on Theoretical Aspects of Software Engineering,
TASE 2014, Changsha, China, September 1-3. Proceedings. IEEE Computer Soci-
ety Press, 2014.

17. K. Havelund. Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT), April 2014. Published online.

18. D. Luckham, editor. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, 2002.

19. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP
runtime verification framework. Software Tools for Technology Transfer (STTT),
14(3):249–289, 2012.

