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Abstract

Most flight software testing at the Jet Propulsion Labo-
ratory relies on the use of hand-produced test scenarios and
executed on systems as similar as possible to actual mission
hardware. We report on a flight software development effort
incorporating large-scale (biased) randomized testing on
commodity desktop hardware. The results show that use of
a reference implementation, hardware simulation with fault
injection, a testable design, and test minimization enabled a
high degree of automation in fault detection and correction.

Our experience will be of particular interest to develop-
ers and researchers working in domains where on-time de-
livery of software is critical (a strong argument for random-
ized automated testing) but not at the expense of correctness
and reliability (a strong argument for model checking, theo-
rem proving, and other heavyweight techniques). The effort
spent in randomized testing can prepare the way for gener-
ating more complete confidence.

1. Introduction

Every space mission generates a of large amount of data,
which must be stored until it can be downlinked to Earth for
analysis (or display on NASA TV and websites). In recent
missions, JPL has relied onFlash memoryto store most of
this data, as Flash uses little power, has little mass, has a
high information density, and involves no moving parts —
making it ideal for space mission use. For convenience and
flexibility, most of this data is stored in hierarchical file sys-
tems similar to those used in standard operating systems.
The data stored is often irreplacable (e.g., landing teleme-
try or images of impact with a comet) or critical to mission
success: it is essential that Flash file systems provide high
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reliability for space missions. JPL’s experience with com-
mercial Flash systems has not established confidence that
that current commerical Flash file systems provide the reli-
ability required for space mission use [13].

Flash devices in space operate in a hostile environment:
solar flares and higher radiation levels make hardware faults
more likely; system reboot is a standard fault protection re-
sponse (as shown in the MER Flash anomaly [13]), making
it essential that a mission file system survive reboots with-
out loss of data integrity.

The Laboratory for Reliable Software has been devel-
oping Flash file system software for use in future space
missions, with the goal of using the full array of available
software verification and validation technologies — ran-
domized testing, runtime monitoring, static analysis, model
checking, and theorem proving [3] — to establish confi-
dence in the correctness of this file system.

This paper describes our efforts with randomized differ-
ential testing, including our approach to hardware simula-
tion with fault injection, randomized test input generation,
design for testability, and automated test case minimiza-
tion. Our eventual goals encompass more formal, heavy-
weight approaches to correctness, but past experience (and
common sense) indicate that during the early stages of de-
velopment, when requirements and code are fluid and rich
in errors, systematic, disciplinedtestingwith a high degree
of automation offers a much quicker path to finding many
bugs. The infrastructure and specification effort applied to
testing will pay off in more rigorous approaches (i.e., model
checking and theorem proving, as discussed below).

More importantly, the use of modern randomized test-
ing techniques offers an opportunity to improve the state-
of-practice in flight software development at JPL. Testing
efforts at JPL currently rely on nominal and stress testing
on actual flight hardware. This testing is essential to under-
stand behavior and performance in typical scenarios, but is
ineffective at exposing low-probability software errors.Ex-
perience shows that the limited nominal scenarios seldom
describe the full set of actual system behaviors, since what



may be considered “atypical” often does arise in practice.
This approach also results in heavy contention for expensive
flight hardware testbeds, threatening launch schedules. Bet-
ter hardware simulation and large-scale randomized testing
on developer workstation hardware offers the chance of ex-
posing subtle errors earlier, and is likely to prevent danger-
ous defects from reaching the launch pad. The review pro-
cess for our file system offers a chance for JPL’s software
developers and engineers to evaluate the effectiveness of our
approach and the applicability of similar methods in other
flight software.

1.1. NAND Flash: Operational Character-
istics and Fault Modes

Our efforts have so far focused on NAND Flash [14],
which presents a greater challenge from the viewpoint of re-
liability, since blocks may become bad at any time. In addi-
tion, because NAND Flash has higher density, it is typically
the primary storage medium for a mission’sdata products,
and is therefore likely to undergo much heavier use than
NOR Flash which is typically used to store flight software
binaries, which are updated far less often. However, we are
also currently planning an extension of our design to NOR
Flash.

A NAND Flash device consists of a set ofpages, divided
into larger units calledblocks(see Figure 4). The basic op-
erations on a NAND device are:write to page,reada page,
anderasea block. Once a page has been written, it may
be read any number of times. In general it is impossible or
unwise to write to a page once it has been written to, until it
has been erased. Erases are only possible at the block granu-
larity. Flash file systems must manage invalid and outdated
pages and perform garbage collection, rather than relying
on overwriting old data.

NAND Flash suffers frombad blocks: writes and erases
to portions of the device may fail, or suffer from a high
error rate. A list of initial bad blocks is provided by the
card manufacturer, but new bad blocks may appear dur-
ing operation. Managing and extending the list of known
bad blocks is a requirement for a reliable Flash file system.
Flash blocks have a limited lifetime of erases, and the prob-
ability that a block will go bad increases as this threshold
is approached. Extended mission life (as seen in the Mars
Rovers) requires a strategy for “wear-leveling” to prevent
early failure of heavily-used blocks.

Errors in page writes or corruptions of written bits due
to radiation (or reset during a write operation) are guarded
against by error detection and correction bits (EDAC) on the
hardware, but the file system must be robust in the presence
of uncorrectable errors.
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Figure 1. Randomized differential testing in-
ner loop

1.2. Test Strategy

Our randomized test system repeatedly invokes a ba-
sic strategy for comparing behavior over POSIX operations
(see Figure 1):

1. Optionally inject a faultF into the hardware simula-
tion layer. Faults include write failures, erase failures,
undetected write failures, and system resets.

2. Randomly choose a POSIX operation,P , and vectorv
of parameters for the operation.

3. ApplyP(v) to the tested system.

4. Check for failure due to injected faults, and take ap-
propriate actions (re-mount after a system reset, etc.).

5. Apply P(v) to the reference system, if injected faults
did not prevent the operation from taking place on the
tested system.

6. Compare return values and error codes for tested and
reference systems. Terminate with test failure if results
differ in unacceptable ways.

7. Compare file system contents.

8. Check invariants.



This is repeated until an error is detected or a maximum
test length has been exceeded. A test case (which consists
of a sequence of POSIX operations, non-POSIX file sys-
tem operations, and fault injections) begins with no inter-
esting content on the Flash device and builds up an increas-
ingly complex set of directories and files (and thus written
pages on the device). The results reported in this paper de-
scribe the errors found during billions of iterations of this
core loop.

1.3. Overview of Results and Lessons
Learned

Testing continues to this day, and will continue into the
indefinite future, making all results provisional. This report
is focused on the first months of testing. At the end of this
period, testing was producing no failing test cases. To date,
the longest continuous run of successful tests includes over
3.5 randomly selected billion operations. We estimate that
mission usage for a nominal year would produce no more
than X operations, selected from a more benign set (and
with far fewer expected faults) than in our randomized tests.

Figure 2 shows the defects discovered during each of the
first 25 weeks of testing. In the months since then, no de-
fects have been discovered by randomized testing. The la-
bels indicate important stages in testing. During the second
week of testing, the problematicrename operation was
added. During the fourth week of testing, bad block faults
were introduced into the mix. During the seventh week
of testing, a check for usage of bad blocks was strength-
ened, resulting in the large peak in the number of detected
errors (this particular check exposed many obscure, semi-
independent corner cases). Multi-partition operations were
tested once they were well-defined in requirements, around
the eighth week, and “stress” tests focusing on nominal op-
eration sequences weer introduced during the tenth week.
Finally, read errors were introduced into the fault model
during the eighteenth week of testing. The graph shows the
expected curve of an initially large number of defects dis-
covered with each additional level of test thoroughness, fol-
lowed by a period of declining defects as the code stabilizes
and regressions prevent check-in of new errors (we report
defects in builds, not those discovered during developer re-
gression checks before commit). The final weeks, with no
errors, point to the future: despite large numbers of tests and
coverage measures meeting our goals, the inability to find
new errors does not establish that the software performs as
expected. Randomized testing cannot explore, even for a
very small state space, all the interesting configurations of
the file system. As noted, we view randomized testing as
a prelude to a more rigorous specification and verification
effort.

We describe the experience of model checking and for-

mal methods researchers with randomized testing: the ef-
fectiveness of randomized testing at bug-finding establishes
a challenging baseline for more heavyweight techniques.
We also note that the features that we believe made random-
ized testing effective — design for testability, availability
of a reference implementation, and well understood fault
model — should make model checking and theorem prov-
ing easier. In a sense, the evaluation of our experience is
impossible at this point: the real question is whether impor-
tant errors remain in the code, undetected by our testing. In
another sense, the chief lesson is that, even when thegoal
is full correctness, and resources and interest are available
to pursue this goal, randomized testing is worth pursuing.
Testing and formal verification are not in conflict: both ben-
efit from the same attention to design for error exposure and
the use of as much tool-based automation as possible. The
difficulty of model checking (and theorem proving) makes
randomized testing attractive, when software actually hasto
be delivered. The uncertainty of randomized testing makes
heavyweight techniques attractive when correctness and re-
liability really matter. When software has to be both de-
livered and correct, it seems reasonable to pursue both ap-
proaches, and concentrate on approaches that will avoid du-
plication of effort in testing and verification. Our experience
strongly supports this conclusion.

2. Related Work

McKeeman first described the use of randomized differ-
ential testing for C compilers [8]. His domain was essen-
tially static: a test case was randomly generated based on
some model of valid inputs, and output was compared for a
variety of systems (C compilers). We report on differential
testing in a more reactive context: the results from POSIX
operations on the reference system were used to influence
our choice of future operations. In one sense, we report on
an easier task: constructing valid, interesting random se-
quences of POSIX operations proved easier than construct-
ing random C programs satisfying various semantic or syn-
tactic properties. In another sense, we report on a more dif-
ficult task, in that fault injection considerably complicated
the issue of test evaluation — the reference system did not
mirror faults injected in the test system.

In the long-term, we hope to use the methods and in-
frastructure developed in our testing efforts to support more
thorough and formal verification of the file systems before
they are used in flight. We believe the reference implemen-
tation and hardware simulation will be equally useful for
model-driven verification [6] using the SPIN model checker
[4]. Yang et al. decribe previous efforts to find serious er-
rors in file systems via model checking with CMC [10],
and note the utility of testing as a prelude (or postscript)
to model checking [15].
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Figure 2. Results for the first 25 weeks of testing

3. Hardware Simulation with Fault Injection

The most critical element in testing was a simulator for
the Flash hardware. Software simulation enabled full con-
trol over fault injection and efficient testing.

The simulator is implemented as a library, matching the
function signatures of the actual hardware driver. In ad-
dition to the core functions provided by the real hardware
driver, it provides initialization and configuration (Flash de-
vices of arbitrary size can be used in testing) andfault in-
jection hooks. Effort invested in building a good simulation
layer for testing will pay off in more rigorous approaches, as
well: the Flash simulator will be essential for model check-
ing the file system, providing a backtrackable “Flash de-
vice” for use in model-driven verification [6].

3.1 Bad Block Faults

The simplest faults to inject are write and erase failures.
The failure model allows for the failure of a block of Flash
memory, detected as a failure of a write or erase call. The
simulator allows a trap to be set with a countdown mecha-
nism, forcing thenth write or erase to a block to fail (for
randomly chosenn). The simulator can be configured to
make such failure permanent (no future writes or erases will
succeed) or transient, to test different fault models. Success-

fully written pages of a bad block remain readable.

3.2 Read Failures

Read failures complicate matters somewhat; the simula-
tor allows for transient read failures, but our testing has con-
centrated on another class of “read failures.” In this case,a
write call returns success but fails to actually write to the
page. The failure manifests itself to the file system when a
read call is issued for that page. For critical data, the simula-
tor (and driver) provides averified-writecall, which writes
to a page and immediately reads back the data to confirm
that the write actually happened. All types of read faults are
injected by use of a countdown to a trap, as with write and
erase failures.

3.3 System Resets

System resets are simulated by placing the hardware into
a reset modein which all write and erase operations fail.
A trap is set with a countdown, as with other faults. The
file system software continues to operate after a “reset” but
is unable to make changes to the non-volatile Flash state.
Eventually, when control returns from the file system to
the test driver, the in-memory structures of the file sys-
tem are cleared and re-initialized. It would also be possi-
ble to directly return control to the test harness from within



the driver (see Section 7). We continue execution for two
reasons: (1) to obtain useful information from return val-
ues (such as the number of bytes successfully written by a
write call) and (2) to test loop bounds in the presence of
complete hardware failure.

4. Differential Testing: Oracle via Reference
Implementation

The most difficult challenge in randomized testing is de-
termining if the tested system is behaving correctly.Gener-
ating a useful set of random inputs is challenging (though
even pure “fuzz” can expose errors [9]), but determining
whether a test run that does not crash the tested system has
performed correctly over the inputs is even more difficult.
Limited ability to detect faults may be derived from sys-
tem invariant checks and assertions (and we make use of
these) or runtime monitoring of temporal logic properties,
but full functional correctness is often difficult to encodeas
a specification. Aworking implementationis a very use-
ful “specification” for functional correctness. Differential
testing works by comparing the behavior of a tested system
to another implementation of similar functionality. Every
divergence, in theory, exposes an error in either the tested
system or the reference system.

We used heavily-tested and widely available file sys-
tems, including the Solaris file system, Cygwin, and EXT3
and tmpfs on Linux, as reference implementations. Most
tests compared results to tmpfs, which was the fastest of the
available implementations.

4.1 Hashing the File Systems

Instead of performing a full comparison of all file con-
tents at each stage of testing, we opted to compute a hash
H over each file system.H is based on directory structure,
file names, and file sizes. It does not take file contents into
account. We use a hash for two reasons:

1. It is expensive to perform a complete comparison of
file system contents after each operation, but an ap-
proach based on sampling would result in late detec-
tion of errors. When an operation is not applicable to
the reference system, a hash allows us to avoid exam-
ining the reference .

2. A hash provides history that direct comparison does
not: we can determine if an operation changes Flash
state (other than file contents) by comparing hashes
before and after the operation, without keeping a more
detailed history of contents.

4.2 Comparison in the Presence of Faults

The primary challenge in differential testing was han-
dling faults injected into the Flash system. In the first week
of testing, most effort was spent in dealing with ambigu-
ities of the POSIX standard. In particular, special-casing
the instances where Linux (or Solaris) gave a different, un-
desired, error code, producing spurious divergences was a
substantial one-time effort. After this was completed, most
development in the testing framework was devoted to fault
handling.

Injecting bad blocks was easiest, as in most cases, a bad
block should not cause an operation to fail. Most write and
erase failures are not visible to an observer. The exceptions
are (very rarely) when the number of bad blocks detected
while trying to complete an operation exceeds a threshold,
forcing the file system to fail that operation and return a spe-
cial error condition, or when space is exhausted on the Flash
system due to bad blocks. Space-usage computations there-
fore take into account a conservative approximation of the
number of pages unavailable for writing due to bad blocks.

When read errors are injected, determining which differ-
ences in behavior indicate software defects becomes more
difficult. It is impossible for the Flash file system to per-
fectly mimic the reference system when pages committed to
the Flash hardware may not actually be present. For testing
with read errors, we relaxed the requirement that file con-
tents match those on the reference system. Directory con-
tents were required to match, as the use of verified writes
(see Section 3.2) allows the file system to ensure correct
storage of metadata.

The test harness checked a strong atomicity claim for
resets: for every system reset, the file system state after re-
initializing and re-mounting must be either unchanged or
the final state of an operation in progress at the time of reset
(except in the case of multi-page writes, as noted below).
Because resets are triggered by writes and erases, they can
only occur in the context of an operation (note that this is
equivalent to testing the general case, as a reset on the first
write of an operation will produce the same Flash state after
re-initialization as a reset before calling the operation). This
allows us to handle all resets with a simple algorithm, ap-
plied after every call to the Flash file system (in the context
of some operationP(v)):

1. Call into the simulation layer to determine if reset
mode has been triggered. If not, continue normally
(no special handling for reset is needed; apply the op-
eration to the reference as usual).

2. Turn off reset mode (since it will cause all write and
erases to fail) and reinitialize the Flash file system.

3. Compute a new hashH for the Flash file system.



5:: - (creat /gamma) = 0 *success*
6::(rename /gamma /gamma) *EBUSY*
7::(rename /gamma /gamma) *EBUSY*
8::(truncate /gamma offset 373) *EOPNOTSUPP*
9::(rmdir /gamma) *ENOTDIR*

10::(unlink /gamma) *success*
11::(open /gamma RDWR(2)) *ENOENT*
12::(open /gamma RDWR|O APPEND(1026)) *ENOENT*
13::(open /gamma O RDONLY|O CREAT|O EXCL) *success*
14::(rmdir /gamma) *ENOTDIR*
15:: (creat /alpha) = 2 *success*
16::(idle compact 0 0) *success*
17::(idle compact 0 1) *success*
18:: (read 0 (399 bytes) /gamma) *EBADF*
19::(msap rmdir /gamma) *ENOTDIR*
20:: (write 0 479 /gamma) Wrote 479 bytes to FLASH

. . .

*********************************************
Scheduling reset in 1...

*********************************************
195::(rename /delta/gamma/alpha /gamma) *ENOENT*
196::(read -9999 400 /delta/gamma/alpha) *EBADF*
197::write of page 7 block 1 failed on reset trap

(creat /delta/gamma/delta)

*********************************************
Reset event took place during this operation.

*********************************************
(mount) fs Block 4 bad -- hardware memory
*success*
*ENOSPC*

Note: Not comparing results/error codes due to reset.
Clearing file descriptors and open directories...

198::(write -9999 320 /delta/gamma/delta) *EBADF*
199::(rmdir /delta) *EROFS*

Figure 3. Portions of a typical test scenario

4. If H′ 6= H, applyP(v) to the reference system.

5. Special case: ifP is awrite call, performP(v′) on
the reference system, wherev

′ replaces theamount-to-
be-writtenwith the amount-of-bytes writtenreturned
from the call toP(v) on the Flash file system.

6. Otherwise, ifH′ = H, continue to the next operation
in the test sequence.

4.3. Choosing Operations

How is P(v) selected? The details are somewhat in-
volved, but the basic principles are simple:

• Give all basic operations (POSIX calls) the same prob-
ability.

• When selecting parameters, restrict to a near-
neighborhood of valid values.

• Generate pathnames from a finite set of component
names.

• Bias pathname selection towards pathnames for which
a creat or mkdir operation has returned success;
allow all pathnames.

Figure 3 shows part of a typical test run (for one config-
uration. (To stress different functional scenarios, we make
use of four different configurations, designed to produce
different mixes of POSIX operations.)

Choosing operations in this manner — on-the-fly, while
keeping a loose history of generated files and directories,
balances complete randomness (operations no human is
likely to intentionally produce) with a probability of altering
file system state. The details and exact probabilities, includ-
ing such subtleties as how often to format the Flash parti-
tion, are in no way optimal; they are an adaptation to chang-
ing test results, an educated guess at an optimization prob-
lem impossible to solve (as we wish to optimize forerror-
detection, and do not have the computational resources to
explore the space of strategies in any depth).

5. Design for Testability

The reference implementation made it possible to do
large-scale randomized testing, by providing a (partial) test
oracle. The ability to determine whether a test execution re-
vealed any errors was only part of successful testing, how-
ever: possibly more important is the ability to actually
“flush out” errors present in the software. Compliance with
the POSIX-like interface enables the first; for the second re-
quirement, we made a conscious effort todesign the system
to be testable[12].

5.1. Assertions

The heavy use of assertions [2] made it possible to reveal
errors even when future actions of the test driver prevented
a faulty system state from causing observable failure (con-
sider a format chosen just after a file system corruption),
or simply failed to reveal a failure as a mismatch with the
reference system. The aggressive placement of assertions
was critical enough to the development effort to be included
in one of the authors’ list of ten essential rules for coding
safety-critical software, published inIEEE Computing[5].

5.2. Downwards Scalability

Errors are often caused by complex interactions between
multiple resource and boundary conditions (often called the
“corner cases”). Stress testing typically reveals some of
these errors by exceeding expected limits in system resource
use (memory, storage, etc.) or parameters, but often fails
to explore the complexinteractionsof boundary conditions
that programmers have failed to consider. Model checking
and randomized testing are unlikely to reach the resource-
exhaustions that can only be produced by long system ex-
ecutions. Model checking faces the state-space explosion
problem, and randomized testing is unlikely to generate
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blocks used to ensure that garbage-collection is possible.

only resource consumptions without resource releases. One
way to expose such errors is to change the resource limita-
tions, by scaling the system downwards — for instance, for
a Flash file system, by testing on simulated hardware with
few blocks, few pages per block, and small page sizes. The
diminished size makes it possible to reach complex corner-
case combinations of used/bad/free blocks and relative page
positions with small test cases requiring few fault injections.

Experience with applying model-driven verification [6]
on the Flash file system used on a previous JPL mission re-
vealed that some commercial systems impose hard limits on
downwards scalability, failing to operate on unrealistically
small hardware. In contrast, our file systems were tested
from early stages on very small systems as well as real-life
configurations. For testing, we typically used a configura-
tion with 6 blocks of Flash memory, 4 pages per block, and
200 bytes per page (32 bytes for header information and 168
for data) (see Figure 4) for most partitions. Smaller config-
urations made it difficult to perform more than a handful of
operations before running out of space, while larger con-
figurations were not as effective for exposing corner-case
errors. It is always possible that errors exist that can only
be detected on a larger Flash configuration (or smaller). We
rely on the “folk version” of the small model property, in-
voked in bounded model checking [1], protocol verification,
and other fields: it is typically the case that correctness for
a sufficiently large small configuration implies correctness
for all larger configurations. In any case, the goal of testing
is to expose bugs, not to prove correctness.

5.3. Designing System Behavior for Testa-
bility

In a few cases, the choice of system behavior was mo-
tivated primarily by testability requirements. In particular,
the renameoperation requires multiple directory updates,
and introduces the possibility of duplicate entries in direc-
tories. Competing designs were proposed for dealing with
the possibility of duplicates: some allowed the test driver
to predict whether a rename operation interrupted by a sys-
tem reset would result in a state prior to or after the rename.
These designs were preferred because of their testability:
they made strong guarantees about the performance of re-
name, beyond those strictly required for correctness.

6. Automated Test-Case Minimization

The randomized approach was very successful in discov-
ering errors for a long period during the early stages of test-
ing. This success posed a problem: on a typical day, testing
would produce hundreds or thousands of randomly gener-
ated failing test cases, representing several independenter-
rors. Due to randomization, few (if any) of these test cases
succinctly exposed a failure: most test cases contained hun-
dreds of unnecessary operations, obscuring a small number
of critical fault injections and file system operations. Forex-
ample, between 10:00 AM and 8:00 PM, on February 22nd,
the test driver generated 610 failing test cases, ranging in
length from 12 steps to 1,011 steps, with average length of
slightly over 520 steps. Delivering this mass of undigestable
material to a developer would have been counterproductive.

The solution was to present onlyminimizedtest cases
for inspection and debugging. As each failing test case
was generated, delta-debugging [16] was applied to pro-
duce aminimized test case. Unfortunately, in early stages
of testing, large errors resulting from complex causes of-
ten proved to contain an embedded instance of a different,
simpler error. Because certain simple errors proved difficult
to fix and obscured more important problems, we modified
Zeller’s delta debugging scripts to use simple heuristics for
“the same error” — e.g., requiring that the final POSIX op-
eration remain unchanged, and only considering assertion
failures to be valid minimizations of assertion failures.

Hand inspection (based on grepping for similar failing
operations and/or asserts) was used to construct an approx-
imate breakdown of the errors into representatives for fail-
ures presumed to stem from different causes. The minimzed
tests were delivered to the developer, and the original test
cases (and their minimizations) were re-executed after fixes
for the proposed set of errors were delivered. In some cases,
it was necessary to re-minimize a long test case because the
first minimized version no longer failed due to the fixes for



other errors. The process was iterated until all original and
minimized test cases succeeded.

For the February 22nd tests, the final set of representa-
tive failures derived from the minimizations of the 610 test
cases consisted of 17 tests, ranging in length from 1 step to
93 steps, with an average length of 30. In all cases these
tests were shorter than the shortest test in the original set
of 610 exhibiting the same failure. The average length of a
minimized test case for the full February 22nd set was 39
steps — a 92.5% reduction over the original test cases.

Performing a similar classification by hand over the orig-
inal set of test cases would have required much more devel-
oper effort, as the operational patterns indicating different
failures would have been difficult or impossible to extract
from the noise of other operations. We expect that mini-
mization would assist automated statistical error classifica-
tion approaches as well [17].

7. Reuse of the Test Framework

In addition to the Flash file system, we have been devel-
oping two other systems for potential mission use. The first
of these is a RAM file system, similar in interface to the
Flash file system, but operating on system memory. This
system poses an interesting challenge, since one of the re-
quirements is to be reliable across a “warm” system reset.
In a warm reset, the software is restarted, and all data (and
code) on the program stack is cleared, but any data on the
heap (which stores the contents of the RAM filesystem) is
not cleared, though it may be corrupted (for instance, the
last word being written at the time of the warm reset may
have not been written completely). In this case, the memory
for the file system needs to be recovered, even after the soft-
ware has been terminated and re-started in mid-operation.
The second effort is to produce a low-level interface for ma-
nipulation of raw data on the Flash memory, accessed as an
array, rather than as a file system.

In both cases, we reused the framework developed for
testing the Flash file system. Our experience has been that
initial efforts to develop an effective test system pay off in
re-use on similar projects. The significant differences (fault
model and injection in the case of the RAM file system, and
reference suitability in the case of the low-level Flash inter-
face) were less important than the similarities. For the RAM
file system, the strategy adopted for simulating system re-
sets in the Flash file system was not available: “writes” are
modifications to main memory, assignment statements and
memcpy calls in C. Replacing all such calls with macros
or function calls would decrease code readability and re-
duce system performance. We used CIL [11] to rewrite the
source to instrument each global memory access with a call
to a function that checked for reset (and decremented a re-
set counter if reset was pending). Thecheck for reset

function optionally corrupted the location of the last write
and returned control (viasetjmp) to the test driver, in the
event of a reset trap. Overhead was less than 1% for this in-
strumentation. For the low-level interface, we implemented
our own array-based reference implementation.

This experience increases our confidence that the frame-
work developed may be generalized to other testing appli-
cations.

8. Errors Exposed by Testing

No experience report would be complete without some
discussion of the kinds of errors discovered. The file sys-
tem errors exposed during our testing can be grouped into
three categories, in order of increasing criticality: POSIX
divergences, errors in handling hardware faults, and major
file system integrity losses. Figure 2 shows a “history” of
the defects discovered during testing.

8.1. POSIX Divergences

The first week of testing exposed a number of incor-
rect POSIX error codes. The only difficulty in resolv-
ing these was in diffrentiating between genuine errors and
cases where POSIX allowed multiple possible return codes.
These errors were very quickly eliminated, and during the
remainder of development few were re-introduced (in two
occasions, a rewrite of parameter-checking code did pro-
duce a new POSIX divergence).

8.2. Fault Interactions

Hardware fault interactions that did not compromise file
system integrity were the most heavily-populated category
of errors, responsible for the majority of errors between the
fourth week of testing and the 13th week. Most of these
errors consist of the file system incorrectly managing its in-
ternal list of bad blocks — either attempting to write to a
bad block or failing to use space on a good block due to
an erroneous assumption that it was bad. This functionality
was also the source of considerable difficulty in testing, as
it is not part of the reference system.

8.3. File System Integrity/Functionality
Losses

A substantial number of the errors discovered involved
a loss of file system integrity or functionality. These errors
were almost all very low-probability scenarios, involving
maliciously placed system resets and precise Flash config-
urations, but of very high severity. We estimate the proba-
bility of discovering any of these errors using standard JPL



hardware testbed procedures to be very slim indeed. Sce-
narios included complete loss of the file system, loss of file
contents (for a file not involved in the operation causing the
error, in some cases), null pointer dereference, inabilityto
unmount the file system, and abortion of file system opera-
tion due to an incorrect assertion about system state.

These errors justify the testing effort — at a low cost,
critical errors in implementation or design were exposed
that would, in many cases, have been impossible to detect
by JPL’s usual testing approaches. Even if certain errors
could have been discovered in the testbed, a very subtle,
low-probability error exposing design issues is likely to be
left in place. The cost of fixing the error would be so high,
and the uncertainty introduced by a late-stage design mod-
ification so great, that the error would likely be deemed
“unfixable.” Our randomized testing framework exposed
over 100 such faults during the test period. While some
of these would have been revealed by normal testing, and
some would have been discovered during review of the de-
sign, we believe that a large number would have made their
way into delivered software, lurking as potential threats to
mission success.

9. Test Coverage

Over our current regression set, coverage of the file sys-
tem ranges from a low of 62.60% on the file containing “ex-
tra” functionality not covered by mission requirements to
89.06% coverage on the file containing core algorithms for
manipulating pages on Flash, the most critical component
of the system. Coverage over 10,000 random tests produces
lower coverage numbers, as would be expected (20% lower
for non-core functionality, but only 3% lower for page ma-
nipulation) . Coverage for 100,000 random tests is roughly
unchanged from that for 10,000 random tests.

We are not particularly concerned with these coverage
numbers. Our interest in coverage focuses on the actual
source lines covered. In particular, we performed hand re-
views of the coverage measures for each line of source code,
and established that all lines not covered fell into two cate-
gories:

• Defensive coding: Most non-covered code has the
structure shown in Figure 5. Certain conditions are
not expected to occur during execution, but cannot be
proven impossible. During testing, assertions detect
these violations of expected behavior. During oper-
ation, it is not reasonable for the file system to sim-
ply abort operation; the file system must take action to
prevent file system corruption and return an error in-
dicating the anomaly. In every such case not covered
during testing,failure of the assertion guard would in-
dicate an error in the file system, or at least in our un-
derstanding of system invariants. Lack of coverage is

therefore a sign of reliability. We do plan to cover the
“impossible” code via software fault injection in order
to ensure that the defensive actions work properly, but
this is a low priority sanity check.

• Trivial parameter checking: The remainder of the
code not covered during random testing consists of
checks for minimal requirements on input parameters
to POSIX calls (e.g., that the read buffer is not NULL
or a read request a negative number of bytes to be read,
as in Figure 6). Producing trivially incorrect input pa-
rameters is a bad use of randomized testing: the be-
havior of the code in such cases does not depend on
the system state and does not change the system state.
Whether testing or model checking, introducing tran-
sitions that do not alter state is an ineffective approach
to bug-hunting.

Of course, “trivial” parameter checking is occasionally
incorrect, missing, dependent on system state, or capa-
ble of modifying system state. We plan to use bounded
model checking [7] or other static analysis to discharge
the assumption of triviality for each non-covered pa-
rameter check.

10. Test Status and Conclusions

As noted in our overview, testing continues. To date, we
have a sequence of over 3.5 billion operations with no de-
tected divergences from expected behavior. This exceeds
expected mission lifetime use by a considerable amount.
We plan to continue testing. Unfortunately, no amount of
randomized testing can establish software correctness. This
leads into our plans for the future, which build on the (min-
mal) confidence in correctness established by our testing ef-
forts.

10.1. Future Work

The most important future work, from JPL’s perspective,
is that we will continue to test mission file systems, in-
cluding a likely re-designs to meet requirements for smaller
memory footprint for large Flash devices.

More interesting pursuits, if not more critical, are to gen-
eralize the framework and apply it first to other file systems
and then to other suitable software development efforts, and
to use the testing framework as a basis for more formal ver-
ification.

The “technology transfer” effort would require the defi-
nition of a language for generating test inputs, a framework
for comparing aspects of tested and reference system behav-
ior, and an easy-to-use method for handling fault-induced
differences. An early effort in this direction was shelved



531914: 780: if (!FS ASSERT((dp->type & FS G) == FS G))
#####: 781: { fs handle condition(dp->type);
#####: 782: FS SET ERR(EEASSERT);

-: 783: }

Figure 5. Defensive coding in the file system
The numbers on the left indicate coverage over a large set of randomized tests. In this case, the conditional on line 780
was executed over 500,000 times, but was never satisfied (0 isindicated by##### in the tool to simplify searching for
un-executed lines).

15007634: 1844: if (want < 0 || b in == NULL)
#####: 1845: { fs i release access(Lp);
#####: 1846: FS SET ERR(EINVAL);
#####: 1847: return FS ERROR;

-: 1848: }

Figure 6. Trivial parameter checking in the file system

due to the pressing needs of development, but relies on gen-
erating programs to generate tests, a convenient framework
for the developers who are most likely to use such a system.

As formal verification researchers, our primary interest
at this point is to go beyond the reliability established by
randomized testing and improve our confidence that the file
system is actually correct. Model-driven verification is a
natural next step: in a sense, model driven verification can
be seen as systematic testing guided by state-space cover-
age. For large state-spaces such as the file system, complete
coverage may be impossible, but coverage of well-designed
state-space abstractions can provide much more confidence
in correctness than random exploration. The ability to de-
tect defects discovered during randomized testing will serve
as a useful measure of abstraction effectiveness, and the
simulation layer will be directly re-usable.
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