
1

Annotation inference for modular checkers

Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino

Compaq Systems Research Center,
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.

This paper presents a general approach to annotation inference for a given static program checker. The approach
reuses the checker as a subroutine. The approach has been used to implement annotation inference systems for
two static program checkers, ESC/Java and rccjava. The paper describes the approach formally and shows how
it applies to ESC.

0. INTRODUCTION

Static program checkers find software defects.
Many static checkers rely on the programmer to
supply annotations describing program proper-
ties such as invariants and module specifications.
The annotations permit the checker to find de-
fects using a local (modular) analysis, because
the annotations provide specifications of module
interfaces. During the analysis, the checker veri-
fies that the supplied annotations are consistent
with the program. The presence of the annota-
tions guides the checking process, thus making
the checking problem conceptually and computa-
tionally simpler.

For example, conventional type checkers fol-
low this modular approach and rely on type
annotations to guide the type checking pro-
cess. Similarly, static race condition checkers,
like rccjava [7], rely on annotations describing
the locking discipline. Another kind of mod-
ular checker is an extended static checker like
ESC/Modula-3 [3] or ESC/Java [6,8], whose an-
notations include preconditions, postconditions,
and object invariants.

A limitation of the modular checking approach
is the burden on the programmer to supply an-
notations. Although programmers have grown
accustomed to writing type annotations, they
have been reluctant to provide additional annota-
tions. In our experience, this reluctance has been
the major obstacle to the adoption of modular
checkers like ESC/Java and rccjava. This an-

notation burden appears particularly pronounced
when one is faced with the task of checking an ex-
isting (unannotated) program.

In this paper, we present a general approach
to building an annotation inference system, an
annotation assistant, for a given checker. Our
approach reuses the checker as a subroutine. We
have implemented annotation assistants for both
ESC/Java and rccjava and have found the in-
ferred annotations to be useful.

In more detail, our annotation assistants have
the following form:

generate candidate annotation set;
repeat

invoke checker to refute annotations;
remove the refuted annotations

until quiescence

The candidate annotation set is a finite set gen-
erated from the program text and checker-specific
heuristics about what annotations are possible
and/or likely to apply to the program. We will
not describe the nature of the candidate set or its
generation any further in this paper. Instead, we
focus on the loop of the pseudo-code above.

Like any invocation of the checker, the invo-
cation inside the loop produces warnings about
pieces of the program that violate some of the
given annotations. The annotation assistant in-
terprets such warnings as identifying incorrect an-
notation guesses in the candidate set. In this
sense, an invocation of the checker has the ef-
fect of refuting some number of candidate anno-

2

tations.
The net effect of the loop is to remove incor-

rect candidate annotations. Thus, the set of an-
notations remaining upon termination is a correct
subset of the candidate set.

Some questions immediately arise about the
correctness of the annotation assistant algorithm:
Does the algorithm terminate with a unique an-
swer? Does it matter in which order the checker
is invoked on the various parts of the program?
Does the checker need to be applied to all parts
of the program on every iteration? What proper-
ties of the checker does the annotation assistant
rely on? In this paper, we describe the approach
formally so that we can answer these questions.

We start in Section 1 by formalizing modular
checkers. Section 2 presents the basic annota-
tion assistant algorithm and the subsequent sec-
tion presents a more efficient algorithm. Section 4
defines a miniature extended static checker and
proves that it satisfies the checker properties as-
sumed by the two algorithms. The last couple of
sections discuss related work and conclude.

Before going on, we introduce some notational
conventions. We write P X to denote the power
set of X . Following Dijkstra, we use a left-
associative infix “.” (binding stronger than any
other operator) to denote function application.
The expression { x

r.x :: t.x } denotes the set
of terms of the form t.x for all x satisfying the
range expression r.x. For Q denoting ∀ or any
associative operator that is symmetric on the el-
ements of { x

r.x :: t.x } (for example, ∪), the
expression 〈Qx

r.x :: t.x 〉 denotes the appli-
cation of Q to the elements of { x

r.x :: t.x }.
If the range expression is true, we may omit the
“

 true”.

1. MODULAR CHECKERS

A modular checker checks a program one part
at a time. We refer to the program parts on which
the checker operates as units of checking, or sim-
ply as units. For some checkers, a unit of checking
may be a routine such as a procedure, method,
or constructor. For other checkers, a unit may be
a larger construct such as a module, package, or
class. We let Unit denote the set of possible units

of checking. We are not concerned with the in-
ternal structure of these units: we simply assume
that a program is a finite set of units and that we
have a checker that can check these units.

While checking each unit, the checker relies
on annotations specifying properties of the other
units in the program. We use Ann to denote the
set of possible annotations.

During the checking process, the checker may
produce two kinds of warnings. The first kind of
warning concerns potential run-time errors, such
as dereferencing the null pointer. Although these
warnings are useful for static debugging purposes,
they do not aid us in the construction of an an-
notation assistant, and we will not discuss them
further.

The second kind of warning concerns refuted
annotations. During the checking process, the
checker may discover that the given unit is not
consistent with some given annotation (for exam-
ple, the unit may be a procedure that fails to
ensure one of its postconditions). In this case, we
say that the checker refutes the annotation. We
formalize the checker as a function C that takes
a unit f and a set of annotations A and returns
the set of annotations in A that are not refuted:

C:Unit × P Ann → P Ann

An annotation assistant relies on two proper-
ties that we assume about the underlying checker.
The first is that the set of annotations returned
by the checker is a subset of those to which the
checker is applied, that is, C.f is contracting:

(Ch0)
〈 ∀ f, A

f ∈ Unit ∧ A ⊆ Ann ::
C.f.A ⊆ A 〉

The second property is that C.f is monotonic:

(Ch1)
〈 ∀ f, A, B

f ∈ Unit ∧ A ⊆ B ⊆ Ann ::
C.f.A ⊆ C.f.B 〉

Intuitively, if a checker invocation does not refute
a particular annotation, then passing additional
annotations to the checker does not cause that
annotation to be refuted either.

For convenience, we overload (“lift”) C to also
apply to sets of units: for any subset F of Unit ,

C.F.A = 〈 ∩ f

f ∈ F :: C.f.A 〉 ∩ A

3

For the lifted checker, C.F is also contracting and
monotonic. Furthermore, for any unit f , set of
units F , and set of annotations A, we have

(0)f ∈ F ⇒ C.F.A ⊆ C.f.A

(1)f ∈ F ∧ C.F.A = A ⇒ C.f.A = A

We say that an annotation set A is valid for
a program P if C.P.A = A, that is, if C does
not refute any of the annotations in A. It fol-
lows from properties Ch0 and Ch1 that validity
is closed under union. Hence, for any program P

and annotation set A, there is a unique greatest
subset of A that is valid for P .

2. ANNOTATION ASSISTANTS

An annotation assistant is a program that, for
a given (finite) candidate annotation set G and
a program P , computes the greatest subset of G

that is valid for P . Formally, an annotation as-
sistant computes a set B such that

(AA0)B ⊆ G

(AA1)C.P.B = B

(AA2)〈 ∀X

X ⊆ G ∧ C.P.X = X :: X ⊆ B 〉

The following program implements an annota-
tion assistant.

B := G ;
while C.P.B 6= B do

choose X such that C.P.B ⊆ X (B ;
B := X

end

The body of this loop picks any set X that sat-
isfies the given constraint and then sets B to X .
The loop guard and Ch0 guarantee that such an
X exists.

The program satisfies the specification of an an-
notation assistant: It is not hard to prove, using
Ch1, that AA0 ∧ AA2 is a loop invariant. The
negation of the loop guard is AA1. Termination
follows from variant function |B|, which is strictly
decreased by the loop body.

Note that this program can remove from B any
annotation that C.P.B refutes; it need not con-
tract B to C.P.B itself. Thus refuted annotations
can be removed from B in any order.

3. A MORE EFFICIENT ALGORITHM

Although the algorithm described in the pre-
ceding section is simple, it is also inefficient, since
it involves computing C on all units of the pro-
gram in each iteration. In practice, this is usually
unnecessary, since units are often “independent”
of certain annotations (e.g., if the units do not
read or write the variables mentioned in those an-
notations). In this section, we explore this idea
further in order to develop a more efficient algo-
rithm for computing the greatest valid subset.

A relation indep on Unit × P Ann is an inde-

pendence relation for a checker C if it satisfies the
following properties, for all units f and annota-
tion sets B and K,

(Ind0)indep.f.B ⇒ C.f.(B ∪ K) ⊆ B ∪ C.f.K

(Ind1)indep.f.∅

Informally, indep.f.B denotes that unit f is inde-
pendent of the annotations in B.

Given an independence relation, we develop a
more efficient algorithm that recomputes C.f.A

for a unit f only upon removal of an annotation
on which f depends. This is achieved by using
a set W (called the “work set”) to record those
units that remain to be checked. In particular, we
maintain the loop invariant AA0∧AA2∧ (2)∧ (3)
where

(2)W ⊆ P

(3)C.(P W).B = B

Informally speaking, (3) states that the annota-
tion set B is valid for the set of units P W . Loop
invariants (2) and (3) are initially established by
setting the work set to P , and whenever a set R

of annotations is removed from B, the work set
is enlarged to include all the units that are not
independent of R. The loop terminates when the
work set is empty. The full algorithm is given in
Figure 0.

We prove that this program satisfies the spec-
ification of an annotation assistant. First, note
that the negation of the guard is W = ∅, which
with (3) implies AA1. The proofs that AA0 and
AA2 are loop invariants are similar to those of
the algorithm in the previous section. It is sim-
ple to prove that (2) is a loop invariant and that

4

B := G ; W := P ;
while W 6= ∅ do

choose F such that ∅ (F ⊆ W ;
X := C.F.B ;
R := B X ;
Y := { f

f ∈ P ∧ ¬indep.f.R :: f } ;
B := X ;
W := (W F) ∪ Y

end

Figure 0. The more efficient algorithm.

(3) is established initially. Proving that (3) is
maintained by the body comes down to proving
that

C.(P ((W F) ∪ Y)).X = X

holds just before the assignment to B. By Ch0
and the definition of the lifted checker, it is suffi-
cient to prove that

〈 ∀ f

f ∈ P ((W F) ∪ Y) :: X ⊆ C.f.X 〉

With F , X , R, and Y defined as suggested by the
program text, we calculate,

f ∈ P ((W F) ∪ Y)
= { set calculus }

f ∈ P ∧ f 6∈ W F ∧ f 6∈ Y

= { definition of Y }
f ∈ P ∧ f 6∈ W F ∧ indep.f.R

⇒ { Ind0 with B, K := R, X }
f ∈ P ∧ f 6∈ W F ∧
C.f.(R ∪ X) ⊆ R ∪ C.f.X

= { set calculus and F ⊆ P (by (2)), and
R = B X and R ∪ X = B (by Ch0) }

(f ∈ P W ∨ f ∈ F) ∧
C.f.B ⊆ (B X) ∪ C.f.X

⇒ { (3), (1), and (0) }
(C.f.B = B ∨ C.F.B ⊆ C.f.B) ∧
C.f.B ⊆ (B X) ∪ C.f.X

⇒ { lifted Ch0 }
C.F.B ⊆ C.f.B ∧ C.f.B ⊆ (B X) ∪ C.f.X

⇒ { X = C.F.B }
X ⊆ (B X) ∪ C.f.X

= { set calculus }
X ⊆ C.f.X

source statement S ts.X.Y.S

v := e v := e

assert e assert (): e
assume e assume (): e
S0 ; S1 ts.X.Y.S0 ; ts.X.Y.S1

S0 S1 ts.X.Y.S0 ts .X.Y.S1

var w in S end var w in ts.X.Y.S end

call m

〈 ; p

 (pre, m, p) ∈ Y ::
assert (pre, m, p): p 〉 ;

var V̀ar , V́ar in

〈 ; v

v ∈ Var :: v̀ := v 〉 ;
〈 ; q

 (post, m, q) ∈ X ::
assume (post, m, q): q 〉 ;

〈 ; v

v ∈ Var :: v := v́ 〉
end

Figure 1. The source language (left column)
and its translation ts into intermediate-language
statements (right column).

Termination of the more efficient program fol-
lows from the lexicographically ordered variant
function (|B|, |W |), which is strictly decreased by
the loop body, as can be proved using Ch0 and
Ind1.

4. APPLICATION: EXTENDED STATIC

CHECKING

In this section, we formally define a miniature
extended static checker, ESC. We show that it
satisfies the two properties Ch0 and Ch1, which
are assumed of the checker by the basic algorithm
in Section 2. We then define independence for
ESC annotations, and show that the definition
satisfies the properties Ind0 and Ind1, which are
used by the more efficient algorithm in Section 3.

For ESC, a unit of checking is a procedure,
which has the form

proc m is S

and declares that m is the name of a procedure
with body S. A procedure body is a source state-
ment in the simple untyped language shown in the
left-hand column of Figure 1. The language is
a variation of the guarded-command language in-

5

troduced by Dijkstra [4], with some more recent
additions (see, e.g., [11,0]). It includes assign-
ments, assert and assume statements, sequential
composition, demonic choice, local variable in-
troduction, and procedure calls. For simplicity,
loops are not included, but recursion is allowed.

An execution of a source statement has three
possible outcomes: it may terminate (in some
state), it may recurse forever, or it may “go
wrong”. The execution goes wrong if it reaches
a statement assert e in a program state where
the predicate e evaluates to false . If e evaluates
to true, the assert statement terminates without
changing the state.

The language includes demonic (blind) nonde-
terminism, in two ways. First, the execution of
S T executes either S or T , but the choice be-
tween the two is made arbitrarily. Second, the
execution of var w in S end executes S having
first introduced local variables w with arbitrary
initial values. The nondeterminism in a program
statement can be tamed by assume statements:
every “arbitrary” choice is made in such a way
that the predicate e is true whenever the execu-
tion reaches a statement assume e. Stated dif-
ferently, the semantics of a statement considers
only those executions in which the predicates of
assume statements evaluate to true. The assume
statement does not change the program state.

For example, the statement

(assume 0 ≤ x ; S) (assume x < 0 ; T)

is the familiar deterministic statement

if 0 ≤ x then S else T end

In addition to procedure declarations, pro-
grams accepted by ESC can have variable dec-
larations. We let Var denote the set of variables
declared in the program.

The annotations accepted by ESC are pre- and
postconditions of the forms:

(pre, m, p)
(post, m, q)

where pre and post are keywords, m is a pro-
cedure name, p is a predicate over Var , and q

is a predicate over V̀ar and V́ar , denoting the

intermediate-language
statement S wp

a
.S.R

v := e R(v := e)

assert b: e

e ∧ R if a = b

e ⇒ R if a 6= b ∧ b = ()
R if a 6= b ∧ b 6= ()

assume b: e e ⇒ R

S0 ; S1 wp
a
.S0.(wp

a
.S1.R)

S0 S1 wp
a
.S0.R ∧ wp

a
.S1.R

var w in S end 〈 ∀w :: wp
a
.S.R 〉

provided no variable in w occurs free in R

Figure 2. The intermediate language (left col-
umn) and its weakest-precondition semantics
with respect to a label a and post-state predicate
R (right column).

values of the variables in the pre- and post-
states, respectively. For instance, a postcondi-
tion for a procedure dec to decrement x may be
(post, dec, x́ = x̀ − 1). The set Ann consists of
all annotations of these two forms.

We define the checker ESC by a staged transla-
tion, similar to the one used by ESC/Java [8]: we
first translate the source statements into an in-
termediate language (see the left-hand column of
Figure 2), and then use weakest preconditions to
translate the intermediate-language statements
into verification conditions. A verification condi-
tion is a predicate whose universal truth is tested
by ESC (whose implementation would in practice
make use of an automatic theorem prover).

The intermediate language has no procedure
call statements. Instead, the translation replaces
each call by its meaning according to the called
procedure’s pre- and postcondition annotations.
The assert and assume statements of the inter-
mediate language bear labels, so as to keep track
of whether the statement originated in the source
or was generated on behalf of some annotation,
and if so, which one. The labels of assert state-
ments are used by the checker to identify which
annotations to refute.

The first of the two translation stages rewrites
source statements by taking annotations into ac-
count. In particular, we write tp.f.X.Y to denote

6

tp.(proc m is S).X.Y =
〈 ; p

 (pre, m, p) ∈ X ::
assume (pre, m, p): p 〉 ;

〈 ; v

v ∈ Var :: v̀ := v 〉 ;
ts.X.Y.S ;
〈 ; v

v ∈ Var :: v́ := v 〉 ;
〈 ; q

 (post, m, q) ∈ Y ::
assert (post, m, q): q 〉

Figure 3. The translation tp of a procedure into
the intermediate language.

the procedure f rewritten according to the sets of
annotations X (used in assume contexts) and Y

(used in assert contexts). Stated differently, the
annotations in X may be assumed in the target
statement whereas the annotations in Y may give
rise to checks in the target statement. Using two
annotation sets as arguments to tp instead of one
is convenient in proofs, as we shall see later. The
definition of tp (“translate procedure”) and its
auxiliary function ts (“translate statement”) are
shown in Figures 3 and 1, respectively.

The second stage of the translation of pro-
cedures into verification conditions uses a func-
tion wp

a
, which determines the semantics of

intermediate-language statements with respect to
a given label a. For any intermediate-language
statement S and predicate R on the post-state
of S, wp

a
.S.R characterizes the pre-states from

which executions of S do not go wrong because
of a and terminate only in states satisfying R.
By defining the semantics with respect to a given
annotation, we are able to characterize when a
procedure might violate the annotation. (With-
out this feature, the checker would only be able
to detect that the procedure is inconsistent with
some annotation, but could not report which.)
The definition of wp

a
is given in Figure 2.

Under wp
a
, an assert statement originating in

the source program (with the empty label “()”) is
given the conventional “assert-stop” semantics: if
a = (), then the asserted condition is checked in
the usual fashion; if a 6= (), then the asserted con-
dition is assumed to hold, because no execution
gets past the statement unless the condition does
hold. An assert statement with a nonempty label

b denoting a guessed annotation is given “assert-
continue” semantics: if a = b, then the asserted
condition is again checked as usual; if a 6= b, then
the assert statement is ignored, because the an-
notation should not be relied on until the annota-
tion assistant reaches quiescence without having
refuted it. Operationally, if the predicate evalu-
ates to false, then an assert-stop check results in
abrupt program termination, whereas an assert-
continue check may cause some diagnostic mes-
sage to be logged but does not otherwise affect
program execution.

Now we can finally define ESC. For a procedure
f and a set of annotations A, ESC returns the
subset of A that, assuming all annotations in A,
does not cause f to go wrong:

ESC .f.A =
{ a

a ∈ A ∧ [wp
a
.(tp.f.A.A).true] :: a }

The square brackets around the wp
a

predicate are
“everywhere brackets” [5] and universally quan-
tify over all program variables. Thus, the formula
[p] denotes that predicate p is universally true.

4.0. ESC is a checker

We now prove that ESC is a checker. The fact
that ESC satisfies Ch0 follows directly from the
definition of ESC. To prove Ch1, it is useful to in-
troduce program refinement [0] for intermediate-
language statements.

A statement S is refined by a statement T when
T has the same behavior as S, except possibly
that T goes wrong under fewer circumstances and
exhibits less nondeterminism (for example, it may
contain more assume statements). Formally, we
define refinement with respect to a label a: for
any intermediate-language statements S and T ,

S ⊑a T ≡ 〈∀R :: [wp
a
.S.R ⇒ wp

a
.T.R] 〉

where R ranges over predicates on the post-states
of S and T .

The function tp enjoys the following refinement
properties, for any label a, procedure f , and an-
notation sets X , Y , and Z:

(4)tp.f.X.Z ⊑a tp.f.(X ∪ Y).Z
(5)tp.f.X.(Y ∪ Z) ⊑a tp.f.X.Y

(6)a 6∈ Z Y ⇒ tp.f.X.Y ⊑a tp.f.X.(Y ∪ Z)

7

These properties follow from the definitions of tp

and ts.
To prove that ESC satisfies the monotonicity

property Ch1, we show

ESC .f.A ⊆ ESC .f.(A ∪ B)

for any procedure f and annotation sets A and
B. We calculate,

ESC .f.A ⊆ ESC .f.(A ∪ B)
= { definition of ESC }
{ a

a ∈ A ∧ [wp
a
.(tp.f.A.A).true] :: a } ⊆

{ a

a ∈ A ∪ B ∧
[wp

a
.(tp.f.(A ∪ B).(A ∪ B)).true] :: a }

= { set calculus }
〈 ∀ a

a ∈ A :: [wp
a
.(tp.f.A.A).true] ⇒

[wp
a
.(tp.f.(A ∪ B).(A ∪ B)).true] 〉

⇐ { predicate calculus }
〈 ∀ a

a ∈ A :: 〈 ∀R :: [wp
a
.(tp.f.A.A).R ⇒

wp
a
.(tp.f.(A ∪ B).(A ∪ B)).R] 〉〉

= { definition of ⊑a }
〈 ∀ a

a ∈ A ::
tp.f.A.A ⊑a tp.f.(A ∪ B).(A ∪ B) 〉

⇐ { (4) with X, Y, Z := A, B, A }
〈 ∀ a

a ∈ A ::
tp.f.(A ∪ B).A ⊑a tp.f.(A ∪ B).(A ∪ B) 〉

⇐ { (6) with X, Y, Z := (A ∪ B), A, B }
true

We have thus shown that ESC is a checker.

4.1. Independence in ESC

We now define an independence relation indep

for ESC, which permits us to use the more effi-
cient algorithm of Section 3.

For any intermediate-language statement S, we
define assumes .S to be the set of annotations at-
tached to assume statements in S, see Figure 4.
Note that

assumes.(tp.f.X.Y) is independent of Y (7)

and

as a function of X , assumes .(tp.f.X.Y)
distributes over arbitrary union

(8)

Finally, for any procedure f and annotation sets
X , Y , and Z,

assumes.(tp.f.X.Z) = assumes .(tp.f.Y.Z) ≡
tp.f.X.Z = tp.f.Y.Z

(9)

intermediate-language
statement S assumes .S

v := e ∅
assert a: e ∅

assume a: e

{

∅ if a = ()
{a} if a ∈ Ann

S0 ; S1 assumes .S0 ∪ assumes .S1

S0 S1 assumes .S0 ∪ assumes .S1

var w in S end assumes .S

Figure 4. The definition of assumes for
intermediate-language statements.

We define independence for ESC as follows, for
any f and B:

(10)indep.f.B ≡ assumes .(tp.f.B.∅) = ∅

To prove that indep is an independence relation,
we next prove that it satisfies Ind0 and Ind1.

For any f and B such that indep.f.B, and for
any K, we calculate,

ESC .f.(B ∪ K)
= { definition of ESC }
{ a

a ∈ B ∪ K ∧
[wp

a
.(tp.f.(B ∪ K).(B ∪ K)).true] :: a }

= { split range }
{ a

a ∈ B ∧
[wp

a
.(tp.f.(B ∪ K).(B ∪ K)).true] :: a }

∪ { a

a ∈ K ∧
[wp

a
.(tp.f.(B ∪ K).(B ∪ K)).true] :: a }

⊆ { set calculus }
B ∪ { a

a ∈ K ∧
[wp

a
.(tp.f.(B ∪ K).(B ∪ K)).true] :: a }

⊆ { (5) with X, Y, Z := B ∪ K, K, B and
set calculus }

B ∪ { a

a ∈ K ∧
[wp

a
.(tp.f.(B ∪ K).K).true] :: a }

= { by calculation below and (9):
tp.f.(B ∪ K).K = tp.f.K.K }

B ∪ { a

a ∈ K ∧ [wp
a
.(tp.f.K.K).true] :: a }

= { definition of ESC }
B ∪ ESC .f.K

where we have used

assumes .(tp.f.(B ∪ K).K)
= { (8) }

8

assumes.(tp.f.B.K) ∪ assumes .(tp.f.K.K)
= { (7) }

assumes.(tp.f.B.∅) ∪ assumes .(tp.f.K.K)
= { indep.f.B and (10) }

assumes.(tp.f.K.K)

thereby establishing Ind0. Property Ind1 follows
directly from (10) and (8) with the empty union.

5. RELATED WORK

Abstract interpretation [2] is a standard frame-
work for developing and describing program anal-
yses. We can view an annotation assistant as an
abstract interpretation, where the abstract state
space is the power set lattice PG and the checker
is used to compute the abstract transition rela-
tion.

As usual, the choice of the abstract state
space controls the conservative approximations
performed by the analysis. In our approach, it
is easy to tune these approximations by choosing
the set of candidate annotations appropriately,
provided that this set remains finite and that the
annotations are understood by the checker.

An interesting aspect of our approach is that
the checker can use arbitrary techniques (for ex-
ample, weakest preconditions in the case of ESC)
for performing procedure-local analysis. If these
local analysis techniques allow the checker to rea-
son about sets of intermediate states that cannot
be precisely characterized using the abstract state
space PG, then an annotation assistant may yield
more precise results than a conventional abstract
interpretation that exclusively uses these abstract
states to represent sets of concrete states.

The issue of annotation-based program check-
ers and associated annotation inference algo-
rithms commonly arises in the study of type sys-
tems. In contrast to annotation assistants, most
type inference algorithms [10,1,9] do not reuse the
type checker. In many cases, this reuse may not
be possible, for example, because the type checker
may not allow multiple type annotation guesses
for a given variable declaration. However, for a
type checker that does satisfy the properties Ch0
and Ch1 (such as rccjava [7]), the approach out-
lined in this paper provides a useful method for
prototyping a simple, though possibly inefficient,

type inference algorithm.

6. CONCLUSION

We have presented an approach for build-
ing an annotation assistant for a given program
checker. The annotation assistant first deter-
mines (guesses) a candidate set of annotations
and then iteratively calls the underlying checker
to distill the candidate set into its greatest valid
subset. In this paper, we described the iterative
part of this approach formally. In our formaliza-
tion, a checker is simply a function that satisfies
the two properties Ch0 and Ch1. We showed that
these two properties imply that the basic anno-
tation assistant algorithm converges on a unique
fixpoint, regardless of the order in which annota-
tions are refuted and removed. We also formal-
ized a notion of independence that leads to a more
efficient algorithm. As an example, we formalized
a miniature extended static checker and showed
that it satisfies the relevant properties.

In this paper, we have not addressed the gen-
eration of the candidate set. The candidate set
would be derived from the program text and from
heuristics specific to a given checker and annota-
tion language. We do permit the candidate set to
contain contradictory annotations. For example,
a procedure may have the contradictory precon-
ditions (pre, m, x < y) and (pre, m, y < x). At
least one of these preconditions will be refuted
when the annotation assistant checks a call site
of this procedure.

Program entry points (such as main in Java or
C) do not have call sites that are visible to the an-
notation assistant. Therefore we require that the
candidate preconditions for program entry points
be correct, i.e., they must hold in the initial state
of the program. Similarly, any candidate invari-
ants on global variables must hold in the initial
state. From this candidate set, the annotation
assistant then infers a subset that holds for all
reachable states.

In practice, an extended static checker is either
unsound or incomplete or both. We can still de-
velop an annotation assistant for such a checker.
An incomplete checker may result in additional
candidate annotations being refuted. An unsound

9

checker may result in incorrect annotations being
inferred. In either case, the inferred annotations
reflect the limitations of the checker and may still
be useful for static debugging.

We have built two annotation assistants from
the approach we presented, for the checkers
ESC/Java [6,8] and rccjava [7]. From our expe-
rience with these, we find the inferred annotations
to be useful. Performance has been adequate for
rccjava, but it remains a problem in the case of
ESC/Java. If an annotation assistant is effective
and efficient, one would expect users to gravitate
toward using the annotation assistant more often
than using the underlying checker directly. This
means the annotation assistant will be run many
times, with small program or manual annotation
changes in between. Hence, we are interested in
finding an “incremental” algorithm, where a run
of the annotation assistant would make use of in-
formation gathered in previous runs. We hope
that the formalism we presented here will help
in reasoning about incremental algorithms and
other more efficient algorithms.

Acknowledgements.

The annotation assistant for ESC/Java (called
Houdini for ESC) was developed by two of the
authors (Flanagan and Leino) and Yuan Yu. The
annotation assistant for rccjava (called Houdini
for rccjava) was developed by Flanagan and
Stephen Freund. We’d like to thank the atten-
dees of the IFIP WG 2.3 meeting in Longhorsley,
England and our colleagues Ernie Cohen and Lyle
Ramshaw for feedback that has helped simplify
the theory presented here.

REFERENCES

0. Ralph-Johan Back and Joakim von Wright. Re-

finement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-
Verlag, 1998.

1. Luca Cardelli. Type systems. The Computer

Science and Engineering Handbook, pages 2208–
2236, 1997.

2. P. Cousot and R. Cousot. Abstract interpreta-
tion: a unified lattice model for static analysis
of programs by construction or approximation of

fixpoints. In POPL 4, pages 238–252, January
1977.

3. David L. Detlefs, K. Rustan M. Leino, Greg
Nelson, and James B. Saxe. Extended
static checking. Research Report 159, Com-
paq SRC, December 1998. Available from
research.compaq.com/SRC/publications/.

4. Edsger W. Dijkstra. A Discipline of Program-

ming. Prentice Hall, Englewood Cliffs, NJ, 1976.
5. Edsger W. Dijkstra and Carel S. Scholten. Pred-

icate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer-
Verlag, 1990.

6. Extended Static Checking home page, Com-
paq Systems Research Center. On the Web at
research.compaq.com/SRC/esc/Esc.html.

7. Cormac Flanagan and Stephen N. Freund. Type-
based race detection for Java. In PLDI’00, ACM

SIGPLAN Notices, 35(5):219–232, May 2000.
8. K. Rustan M. Leino, James B. Saxe, and Raymie

Stata. Checking Java programs via guarded
commands. In Bart Jacobs, et al., editors,
Formal Techniques for Java Programs, Tech-
nical Report 251. Fernuniversität Hagen, May
1999. Also available as Technical Note 1999-002,
Compaq SRC, from research.compaq.com/SRC

/publications/.
9. Robin Milner. A theory of type polymorphism in

programming. Journal of Computer and System

Sciences, 17(3):348–375, 1978.
10. John C. Mitchell. Type systems for programming

languages. In Jan van Leeuwen, editor, Hand-

book of Theoretical Computer Science, Volume B:

Formal Models and Sematics, pages 365–458. The
MIT Press/Elsevier, 1990.

11. Greg Nelson. A generalization of Dijkstra’s cal-
culus. ACM TOPLAS, 11(4):517–561, 1989.

