A Semantic Approach to Secure Information Flow

K. Rustan M. Leind and Rajeev Joshi

! DEC SRC, Palo Alto, CA 94301, USA
rust an@a. dec. com
University of Texas, Austin, TX 78712, USA
j oshi @s. ut exas. edu

Abstract. A classic problem in security is to determine whether a poghas
secure information flominformally, this problem is described as follows: Given
a program with variables partitioned into two disjoint seftshigh-security” and
“low-security” variables, check whether observations loé tow-security vari-
ables reveal any information about the initial values of tingh-security vari-
ables. Although the problem has been studied for severaldésc most previous
approaches have been syntactic in nature, often using ygtenss and compiler
data flow analysis techniques to analyze program texts. jdgier presents a
considerably different approach to checking secure in&ion flow, based on
a semantic characterization. A semantic approach hasatelesirable features.
Firstly, it gives a more precise characterization of seguhan that provided by
most previous approaches. Secondly, it applies to any gnegiing constructs
whose semantics are definable; for instance, the intraslucti nondeterminism
and exceptions poses no additional problems. Thirdly,ntloaused for reason-
ing about indirect leaking of information through variatsin program behavior
(e.g, whether or not the program terminates).

0 Introduction

A classic problem in security is that of determining whethgiven program hasecure
information flow[BLP73,Den76]. In its simplest form, this problem may beadsed
informally as follows: Given a program whose variables agioned into two disjoint
sets of “high-security” and “low-security” variables, akevhether observations of the
low-security variables reveal anything about the initialues of the high-security vari-
ables. A related problem is that of detecticayert flowswhere information is leaked
indirectly, through variations in program behavior [Larh7Bor instance, it may be
possible to deduce something about the initial values ohthlk-security variables by
examining the resource usage of the prograrg,(by counting the number of times it
accesses the disk head).

Although this problem has been studied for several decadest of the previous
approaches have been syntactic in nature, often using ygtenss and compiler data
flow analysis techniques to analyze program texts. In thi@pave present a consider-
ably different approach to secure information flow, based semantic notion of pro-
gram equality. A definition based on program semantics hasakdesirable features.
Firstly, it provides a more precise characterization ofiseinformation flow than that
provided by most previous approaches. Secondly, it is eglplié to any programming

construct whose semantics are defined; for instance, nemdieism and exceptions
pose no additional problems. Thirdly, it can be applied &soming about a variety of
covert flows, including termination behavior and timing degent flows.

The outline of the rest of the paper is as follows. We stareition 1 by informally
describing the problem and discussing several small exesmjVe present our formal
characterization of security in section 2. In section 3, efate our definition to the
notion used elsewhere in the literature. In sections 4 amgkShow how to rewrite our
definition in the weakest precondition calculus so that @risenable for use with tools
for mechanical verification. We discuss related work inisecé and end with a short
summary in section 7.

1 Informal description of the problem

Throughout the rest of the paper, we assume that in eachgrogpnsidered, the vari-
ables are partitioned into two disjoint tuplés(denoting “high-security” variables) and
k (denoting “low-security” variables). Informally, we sayat a program isecureif:

Observations of the initial and final values bfdo not provide any information
about the initial value of .

(Notice that it is only theinitial value of h that we care about.) We illustrate this
informal description of the problem with a few examples.dughout our discussion,
we refer to an “adversary” who is trying to glean some infaiioraabout the initial
value of A . We assume that this adversary has knowledge of the progrerard of
the initial and final values of .

The program

k:=nh

is not secure, since the initial value @&f can be observed as the final value bf
However, the program

h:=k

is secure, since: , whose value is not changed, is independent of the initiakevaf & .
Similarly, the program

k=06

is secure, because the final value fofis always 6 , regardless of the initial value of
h.

Itis possible for an insecure program to occur as a subpnogfa secure program.
For example, in each of the four programs

k:=h;k:=6 0)
h:=k;k:=h Q)
k:=h;k:=k—nh (2)
if false then k := h end 3)

the insecure program := h occurs as a subprogram; nevertheless, the four programs
are all secure.

There are more subtle ways in which a program can be inseéorexample, with
h, k of type boolean, the program

if h then k := true else k := false end

is insecure, despite the fact that each branch of the conditis secure. This program
has the same effect as := h, and the flow of information fromh to % is called
implicit [Den76].

In the insecure programs shown so far, the exact valué a6 leaked intok .
This need not always be the case: a program is considereclies# it revealsany
information about the initial value of . For example, ifh and k& are of type integer,
neither of the two programs shown below,

k:=hxh
if 0 <hthenk:=1elsek:=0end

transmits the entire value df , but both programs are insecure because the final value
of k does reveal something about the initial valuehof

A nondeterministic program can be insecure even if the adwgihas no knowledge
of how the nondeterminismis resolved. For example, thefalig program is insecure,
because the final value df is always very close to the initial value df:

ki=h—1U0k:=h+1

(The operatorl] denotes demonic choice: execution 8f[] T consists of choosing
any one ofS or 7' and executing it.) The program

skip Uk:=h

is also considered insecure, because if the initial and Vialales of £ are observed to
be different, then the initial value of is revealed.

Finally, we give some examples of programs that transmidrimftion abouth
via their termination behavior. The nicest way to preseas¢hexamples is by using
Dijkstra’s if fi construct [Dij76]. The operational interpretation of thegram

if BO — S0l B1 — S1fi

is as follows. From states in which neithét0 nor B1 is true, the program loops
forever; from all other states it executes eithgft (if B0 is true) or S1 (if B1 is
true). If both B0 and B! are true, the choice betweef? and S1 is made arbitrarily.
Now, the deterministic program

ifh=0— loop U h0— skipfi (4)

(where loop is the program that never terminates) is insecure, becabsther or not
the program terminates depends on the initial valué oNext, consider the following
two nondeterministic programs:

if h =0 — skip U true — loop fi (5)
if h =0 — loop U true — skip fi (6)

Note that program (5) terminates only if the initial value fis 0 . Although there

is always a possibility that the program will loop forevéithie program is observed to
terminate, the initial value ofy is revealed; thus the program is considered insecure.
Program (6) is more interesting. If we take the view that pamination is indistin-
guishable from slow execution, then the program is secucsveiter, if we take the
view that an adversary is able to detect infinite loopingntitean deduce that the ini-
tial value of h is 0, and the program should be considered insecure.

Remark. Readers may be wondering just how much time an adversarydwaaue
to spend in order to “detect infinite looping”, so the secom@woint above requires
a little explanation. One way to address the issue of noritetion is to require that
machine-specific timing information (which the adversagyrexploit to detect nonter-
mination) be made explicit in the programming modzh(by adding a low-security
timer variable, which is updated by each instruction). Amotway, which we adopt
in this paper, is to strengthen the definition of security bgsidering powerful adver-
saries who can detect nontermination. As we will see lateséd two approaches yield
the same definition for deterministic programs; it is onlythe presence of nondeter-
minism that differences arise. Even then, our definitiort is@rst a little conservative,
in that it classifies a program such as (6) as inse¢&md of Remark.)

We hope that these examples, based on our informal deseripfisecure infor-
mation flow, have helped give the reader an operational steteating of the problem.
From now on, we will adopt a more rigorous approach. We statfié next section by
formally defining security in terms of program semantics.

2 Formal characterization

Our formal characterization of secure information flow ipmssed as an equality be-
tween two programs. We use the symb#él to denote program equality based on total
correctness and write S is secure” to mean that progra has secure information
flow.

A key ingredient in our characterization is the program

“assign toh an arbitrary value”

which we denote byHH (*havoc onh). Program HH may be used to express some
useful properties. Firstly, observe that the differencevben a programS and the
program “HH ; S " is that the latter executeS after settingh to an arbitrary value.
Secondly, observe that the program§ ¥ HH " ‘discards’ the final value ofh result-

ing from the execution ofS . We use these observations below in giving an informal
understanding of the following definition of security.

Definition (Secure Information Flow)

Sissecure = (HH;S;HH = S;HH) @)

Using the two observations above, this characterization lmeaunderstood as follows.
First, note that the final occurrence &fH on each side means that only the final value
of k (butnot of #) is retained. Next, observe that the prefik# ; ” in the first pro-
gram means that the two programs are equal provided thahtdeséilue of & produced
by S does not depend on the initial value bf. In section 3, we provide a more rigor-
ous justification for this definition, by relating it to a noti of secure information flow
that has been used elsewhere in the literature, but for nevhape that this informal
argument gives the reader some operational understantimg definition. In the rest
of this section, we discuss some of the features of our approa

Firstly, note that we have not stated the definition in terina particular style of
program semantice(g, axiomatic, denotational, or operational). Sequentiabpam
equality can be expressed in any of these styles and differarices are suitable for
different purposes. For instance, in this paper, we will agelational semantics to
justify our characterization, but we will use weakest pradibon semantics to obtain a
condition that is more amenable for use in mechanical vatifia. Secondly, observe
that our definition is given purely in terms of program senethus it can be used
to reason about any programming construct whose semangickefined. For instance,
nondeterminism and exceptions pose no additional probierttés approach, nor do
data structures such as arrays, records, or objects. (tresprdefinitions based on type
systems often need to be extended with the introduction wf canstructs.) Finally,
note that our definition leaves open the decision of whiclatdes are deemed to be
low-security {.e., observable by an adversary). Different choices may be tosehson
about different kinds of covert flows, by introducing appiiate special variables (such
as those used by Hehner [Heh84]) and including them in thesksurity variables
k . For example, one can reason about covert flows involvingnrmonsiderations by
including in £ a program variable that records execution time.

3 Security in the relational calculus

In this section, we formally justify definition (7) by shovgrthat it is equivalent to the
notion used elsewhere in the literature. Since that notamgiwen in operational terms,
we find it convenient to use a relational semantics for totafectness. Thus, for the
purposes of this section, a program is a relation over theesfmmed by extending the
state space defined by and £ with the special “looping statedo [RMD94]. We use
the following notational conventions: Identifieks, z, y, = denote program states; we
write .k and z.h to denote the values of and & in state z . For any relationS
and statesz and y, we write z(S)y to denote thatS relatesz to y; this means
that there is an execution of prograt from the initial statez to final statey . We

assume that every prograf satisfiesco(S)z = z = oo forall z and thatco.k
differs from z.k for all z that differ from co . The identity relation is denoted by
“Id”; itsatisfiesz(Id)y = « =y forall z and y. The symbol C denotes

relational containment and the operatprdenotes relational composition. We will use
the facts thatld is a left- and a right-identity of composition and that is monotonic
with respect to C in both arguments.

We use the following format for writing quantified expressdDS90]: ForQ de-
noting eitherv or 3, we write

(Qj :rg:ty)

to denote the quantification over gll satisfying r.j . Identifier j is called thedummy
r.j is called therange and t.; is called theterm of the quantification. When the
range istrue oris understood from context, it is sometimes omitted. Weeaisimilar
convention to define sets, and write

{j:rg:tj}

to mean the set of all elements of the forg for j satisfyingr.j .
The relational semantics of prografif are given as follows.

(Vz,y :: z(HH)y = z.k=uy.k)
Note that the relatiorH is both reflexive and transitive:

Id
HH ; HH

HH (8)

C
C HH)

Using these properties, condition (7) may be rewritten iati@nal terms as follows.

S is secure
= { Definition (7), program equality= s relational equality= }
HH;S;HH = S;HH

= { (8)and ; monotonic, hencedH ;S ;Id C HH;S;HH }
HH ;S C S;HH

= { Applying“; HH " to both sides, using; monotonic }
HH ;S;HH C S;HH;HH

= { (9)and ; monotonic, hences ; HH ; HH C S;HH }
HH;S;HH C S;HH

= { (8)and ; monotonic, hencdd ; S; HH C HH;S;HH }

HH;S;HH = S;HH

Since the second expression equals the final one, we haweatsnde throughout, and
we have:

Sissecure = (HH;S C S;HH) (20)

This result is useful because it facilitates the followingyidation, which expresses
security in terms of the values of program variables.

HH;S C S;HH

{ Definition of relational containment}
(Vy,w = y(HH; S)w = y(S;HH)w)

{ Definition of relational composition, twice}

(Vy,w :: (Fz :: y(HH)z AN z(S)w)
= (Fz = y(S)2 AN z(HH)w))
= { Relational semantics offH , shunting between range and term
(Vy,w = (Jz = yk=zk N 2z(S)w)
= (Fz:y(S)z: zk=wk))
= { Predicate calculus}
(Vy,w = (Vz s yk=xk AN z(S)w
= (Jz:y(S)z: z.k=w.k)))
= { Unnesting of quantifiers}
(Vz,y,w = yk=zk N z(S)Hw
= (Fz: y(S)z: z.k=wk))
= { Nesting, shunting }
(Vz,y : yk=zk : (Vw = z(S)w
= (3z: y(S)z: zk=wk)))
= { Setcalculus}
(Ve,y:yk=zk: {w:z(SHw : wk} C {z: y(S)z: zk})
= { Expressionis symmetricin andy }
(Va,y: yk=zk: {w:z(Shw : wk} = {z:y(S)z: z.k})

Thus, we have established that, for afiy

Sissecure = (Vz,y: z.k=yk: {w:z(SHw: wk}
={z :y(S)z : 2k }) (11)

This condition says that the set of possible final valuestofs independent of the
initial value of & . It has appeared in the literature [BBLM94] as the definitbeecure
information flow. (Similar definitions, restricted to thetdaministic case, have appeared
elsewhere [VSI96,VS97b].) Thus, one may view the derivasibove as a proof of the
equivalence of (7) with respect to the notion used by others.

4 Security in the weakest precondition calculus

In this section and the next, we show how our definition of seaformation flow may
be expressed in the weakest precondition calculus [Dij@6f. first formulation, pre-
sented in this section, involves a quantification over pratdis; it is therefore somewhat
inconvenient to use. In the next section, we show how thisifdation can be written
more simply as a condition involving a quantification over ttomain ofk .

Recall that for any prograny , the predicate transformeusip.S (“weakest liberal
precondition”) andwp.S (“weakest precondition”) are informally defined as follows
For any predicatep ,

wlp.S.p holds in exactly those initial states from which every terating
computation ofS ends in a state satisfying, and wp.S.p holds in exactly
those initial states from which every computation $f terminates in a state

satisfying p .

The two predicate transformers are related by the follovgaiging property: For any
programs ,

(Vp = wp.S.p = wip.S.p A wp.S.true) (12)

We assume that for all statemerfisconsidered here, the predicate transformeés. S
is universally conjunctivéi.e., it distributes over arbitrary conjunctions), aneithe)
monotonic [DS90].

We start by introducing some notation. For any program witaréable namedv ,

we define the unary predicate transformer : _] (read “v -everywhere”) as follows:
For any predicate
[v:p] = (VM :: wip.“v:=M".p)

where M ranges over the domain of . This unary predicate transformer has all
the properties of universal quantification; in particuifiis universally conjunctive.
Furthermore, for any variables, w and any predicate , we have

[vifw:p]] = [w: [v:pl]

Recall that we are interested in programs whose variabkepartitioned intok
and h . For any such program, we writp] (read “everywherep ") as shorthand for
[h: [k : p]] - The wlp and wp semantics of the progrartHH are:

(Vp = [wlp.HH.p = [h : p]])
[wp.HH .true = true]

Program equality in the weakest precondition calculusvsmgby equality ofwp and
wlp

S=T = (Vp : [wp.Sp=wlp.T.p] N [wp.S.p=wp.T.p])
which, on account of the pairing property, can be simplified t
S =T = (Vp :: [wp.Sp=wlp.T.p]) N [wp.S.true = wp.T.true]

Using this definition of program equality, we now rewrite gty condition (7) in the
weakest precondition calculus as follows.
HH ;S;HH = S;HH

{ Program equality in terms ofvlp and wp }

(Vp :: [wlp.(HH ; S; HH).p = wip.(S; HH).p])
A [wp.(HH ; S ; HH).true = wp.(S ; HH).true]
= { wlp andwp of HH and ; }
(Vp = [[h: wlp.S.[h : p]] = wip.S.[h: p]]) (13)
A [[h @ wp.S.true] = wp.S.true] (14)

The last formula above contains expressions in which a pagely satisfies
[[h:d =4

Predicates with this property occur often in our calculagicso it is convenient to intro-
duce a special notation for them and identify some of thapprties. This is the topic
of the following subsection.

4.0 Cylinders

Informally speaking, a predicate that satisfiedg = [h : ¢]] has the property that its
value is independent of the variabke. We refer to such predicates as “cylinders”,

or simply as “cylinders” ash is understood from context. For notational convenience,
we define the seCyl of all h -cylinders:

Definition (Cylinders) For any predicateq,

geCyl = [q¢ = [h:q]] (15)

The following lemma provides several equivalent ways ofregping that a predicate is
a cylinder.

Lemma O For any predicateq , the following are all equivalenttg € Cyl .

P g = [h:q]

i. [¢ = [h:d]

i. (3p g = [h:p]])
iv. =g € Cyl

Proof. Follows from predicate calculus.(End of Proof.)

4.1 Security in terms of cylinders

We now use the results in the preceding subsection to siyrtpkf formulation of secu-
rity in the weakest precondition calculus. We begin by réngi(13) as follows.

(Vp = [[h: wlp.S.[h:p]] = wpS.[h:p]])
= { Definition of Cyl (15) }

(Vp = wilp.S.[h : p] € Cyl)
= { One-pointrule }

(Vp,g:[g = [h:p]]l: wpSqgelyl)
= { Nesting and trading}

(Vg = (Vp g = [h:p]] = whpS.qelyl))
= { Predicate calculus}

(Vg = (3p=g=1[h:p]]) = wpSqelyl)
= { Lemma 0.iii, and trading }

(Vg: g€ Cyl : wip.S.q € Cyl)

Similarly, we rewrite the expression (14) as follows.

[[h : wp.S.true] = wp.S.true]
= { Definition of Cyl (15) }
wp.S.true € Cyl

Putting it all together, we get the following condition fecaurity: For any progrant',

Sissecure = (Vp: p€eCyl: wlp.S.pe Cyl) AN wp.S.true € Cyl (16)

5 A simpler characterization

Using (16) to check whether a given progra$nis secure requires evaluation of the
following term:

(Vp : pe Cyl : wlp.S.pe Cyl) a7)

Since this term involves a quantification over all cylindérss somewhat inconvenient
to use. In this section, we show how this quantification ovedjzatesp can be re-
duced to a simpler quantification over the domairkof

To explain how this simplification is brought about, we imtuge the notions of
conjunctiveanddisjunctive spansThese notions are defined formally below, but, in-
formally speaking, for any seX of predicates, the conjunctive spa#. X is the set
of predicates obtained by taking conjunctions over the etsbsf X . Similarly, the
disjunctive span.X is the set of predicates obtained by taking disjunctions the
subsets ofX . The main theorem of this section asserts that the range of (17)
may be replaced by any set of predicates whose conjunctareisgthe setCyl . The
usefulness of the theorem is demonstrated in subsectiopmwhekre we show that there
is a simple set of predicates whose conjunctive spafiys.

We use the following notational conventions in this sectkor any setX of pred-
icates, we write— X to meanthesef{q : ¢ € X : - ¢ }. We also writeV. X
to mean the conjunction of all the predicates ih, and 3.X to mean the disjunc-
tion of all the predicates inX . Note that as a result of these conventions, we have
[ﬁ(VX) = E|.(—|X)] .

5.0 Spans
For any setX of predicates, define the set$. X and £.X as follows.
Definition (Spans)

AX = {XS: XSCX :V.XS}
EX = {XS:XSCX:3XS}

The two notions are related by the following lemma.
Lemma 1 For any setX of predicates,
-£X = A(-X)
Proof. Follows from predicate calculugznd of Proof.)
We are now ready to present the main theorem of this section.

Theorem O Let f be a universally conjunctive predicate transformer and }tbe
any set of predicates. Then

(Vp:peX : fpelCyl) = (Vgq: gqe AX : f.ge Cyl)

Proof. Note that the left-hand side follows from the right-handessthce X C A. X ;
thus, it remains to prove the implication

(Vp:peX : fpelCyl) = (Vg:qe AX : f.ge Cyl)

We prove this implication by showing that for any predicatén A.X , the antecedent
implies thatf.q is a cylinder. By the definition of a conjunctive span, thera subset
XS of X suchthatlg = V.XS]. From the definition of cylinders (15)XS C X ,
and the antecedent, we have:

(Vp:peXS:[fp=1[h:fp]]) (18)
Now, we observe:

f.qe Cyl
{ Choiceof XS }

f(Vp:peXS:p)e Oyl

= { f is universally conjunctive }
(Vp:peXS: fp)e Cyl

= { Definition of cylinders (15) }
(Vp:peXS:fp)=Th:(Vp:peXS: fp)l]

= { [h :] isuniversally conjunctive}
(Vp:peXS:fp)=(Vp:pecXS: [h:fp])l
= { (18 }

(Vp:peXS:fp)=(Vp:peXS: fp)
= { Predicate Calculus}
true

(End of Proof.)

From the standpoint of mechanical verification, the usefstrof the result above is due
to the fact that there is a simple set of predicates whoseinotiye span isCy! .

5.1 A simpler quantification

Consider the following two sets of predicates, whéferanges over the domain af .

PP ={M: “k=M"} (19)
NN = {M = “k#M"} (20)

It follows directly from these definitions that
PP = - NN (21)
The relationship of these sets @yl is given by the following lemma.

Lemma 2 With PP and NN as defined above, we have

i. PP = Cyl

10

i. ANN = Cyl

Proof. We give an informal sketch of the proof here; details arettethe reader. By
definition, Cyl consists of exactly those predicates that are independeint that is,
they depend on the variable only. But every predicate ok may be written as a
disjunction of predicates, one for each value in the domé&i& dor which the predi-
cate holds; thus part (i) follows. Part (ii) follows directrom part (i), observation (21),
Lemma 1, and Lemma 0.i{End of Proof.)

Using the fact thatwip.S is universally conjunctive for any statemet, and
Lemma 2.ii, we apply Theorem 0 witli, X := wip.S, NN to obtain the following
reformulation of (16):

Sissecure = (Vq: ¢ € NN : wilp.S.qe Cyl) N wp.S.true € Cyl.
Applying the definition of NN (20), this yields the following condition:
Sissecure = (VM :: wilp.S.(k#M)e Cyl) N wp.S.true € Cyl (22)

Note that this is simpler than (16) since the quantificataorges over the domain af .

5.2 Deterministic programs

In the case thatS is also known to be deterministic and non-miraculous, wefaan
ther simplify the security condition (22). Recall that aatetinistic, non-miraculous
program S satisfies the following properties [DS90]:

(Vp = [wp.S.p = ~wlp.S.(-p)]) (23)
wp.S is universally disjunctive (24)

Consequently, the term involvingp in (22) is subsumed by the term involvinglp :

wp.S.true € Cyl

= { (23), with p := true }
—wlp.S.false € Cyl

= { LemmaO.iv }
wlp.S.false € Cyl

= { false € Cyl }
(Vg: g€ Cyl : wip.S.q € Cyl)

Thus, the security condition for deterministit is given by
Sissecure = (VM :: wip.S.(k# M) e Cyl) (25)

Next, we show that condition (25) may also be expressed ing@f wp and PP
instead ofwlp and NN .

11

(Vg: g€ Cyl : wip.S.q € Cyl)
{ TheoremO }
(Vg: g€ NN : wilp.S.q € Cyl)

{ Negation is its own inverse, so rename dummyo —-p }
(Vp: -p € NN : wlp.S.(-p) € Cyl)

{ Observation (21), and (23)}

:p€PP : —wp.S.p € Cyl)

{ LemmaO.iv }

(Vp:pe PP : wp.S.pe Cyl)

(Vp

Thus we have another way of expressing the condition forrggoof deterministic
programs, namely,

Sissecure = (VM = wp.S.(k=M)e Cyl) (26)

5.3 Examples

We give some examples to show our formulae at work.
Firstly, consider the secure program (2). We calculate,

(k:=h;k:=k—h) issecure
{ Security condition (22) }
(VM :: wlp(k:=h;k:=k—h).(k#£M)e Cyl)
A wp.(k:=h;k:=Fk—h).true € Cyl
= { wlp andwp of := and ; }
(VM :: (h—h#M)e Cyl) A true € Cyl
= { Lemma 0.i, andtrue € Cyl }

(VM = [h—h#M = [h:h—h+#M])

= { Arithmetic }
(VM = [0#M = [h:0+#M]])

= { Definition of [» : _] , predicate calculus}
true

This shows that our method does indeed establish that pro@@gis secure.
Secondly, we apply the security condition to program (5)icivlis insecure because
of its termination behavior. Lettingv range over the domains df , we have:

(if h = 0 — skip [true — loop fi) is secure
= { Security condition (22) }
(VM :: wip.(if h = 0 — skip I true — loop i).(k # M) € Cyl)
A wp.(if h = 0 — skip [] true — loop fi).true € Cyl
= { wilp and wp,using (Vp :: [wilp.loop.p = true])
and [wp.loop.true = false] }
(VM == (h=0 = kE#M) A (true = true)) € Cyl)
AN (h=0V truey N (h=0 = true) A (true = false)) € Cyl
{ Predicate Calculus}
(VM = (h=0 = k#M)e Cyl) N false € Cyl
{ Lemma 0.i, andfalse € Cyl }

12

(VM 2 h=0 = k#M = [h:h=0 = k#M]])
= { Instantiate withM/ := 2

[h=0 = k#2 = [h:h=0 = k+#2]]
= { [p] isshorthandfor[h : [k : p]] }

[h:[k:h=0=>k#2 = [h:h=0 = k#2]]]
= { Definition of [v :] ,twice; wilp of := }

(VM,N :: wlp.(k,h:= M, N). h=0 = k#2

= [h:h=0=k#2]))

= { Instantiate withM,N := 2,2 }

2=0 = 2#2 = [h:h=0 = 2+#2]
= { Predicate Calculus, identity of =}
[h : h# 0]
= { Definitonof [h :] }
(VN = wip.(h:=N).(h#0))
= { InstantiateN := 0 }
0#0
= { Predicate Calculus}
false

Finally, using program (4), we illustrate how one can reasoout secure termina-
tion behavior of deterministic programs usingp .

(if h =0 — loop [I h # 0 — skipfi) is secure
{ Security condition for deterministic programs (23)

(VM :: wip.(if h=0 — loop [l h # 0 — skip fi).(k # M) € Cyl)
{ wip }

(VM :: (h=0 = true) AN (h#0 = k#M)) e Cyl)

= { Definition of Cyl :noteh # 0 = k # M dependsom }
false

6 Related work

The problem of secure information flow has been studied feerse decades. A com-
monly used mathematical model for secure information flolv@gning’s lattice model
[Den76], which is based on the Bell and La Padula securityehf2LP73]. Most ap-
proaches to static certification of secure information flawdrea pioneered by Denning
and Denning [Den76,DD77]) seem to fall into one of two geheategories: type sys-
tems and data flow analysis techniques. In this section, seaids these approaches and
compare them to our work. A historical perspective of seafi@mation flow appears
in a book by Gasser [Gas88].

6.0 Approaches based on type systems

The static certification mechanism proposed by Denning aening [DD77] is es-
sentially a type checker for secure information flow. Eactialde = occurring in a

13

program is declared with a particulsecurity classdenoted byclass.z . These secu-

rity classes are assumed to form a lattice, orderedby with meet (greatest lower
bound) denoted by, and join (least upper bound) denoted thy. The type checker

computes the class of an expression as the join of the claggesubexpressions. For
example, for an expression involving addition, we have

class.(E + F) = class.E 1 class.F

A security class is also assigned to each statement, andnisuted as the meet of the
security classes of the variables assigned to by that séaieRor instance,

class.(z := E) = class.xz
class.(if E then S else T end) = class.S | class.T

The type checker certifies a prograg as being secure provided the following two
conditions hold:

0. For every assignment statement= F in S, class.F < class.xz
1. For every conditional statemeiff £ then 7" else U end in S,
class.E < class.T and class.E < class.U .

Other programming constructs, such as loops, give risanieasirequirements.

Denning and Denning gave an informal argument for the soesslnf their certi-
fication mechanismi.g., a proof that the mechanism certifies only secure programs).
Recently, Volpanet al. have given a more rigorous proof [VSI96,VS97b].

The advantage of using a type system as the basis of a ceitificaechanism is
that it is simple to implement. However, most certificatioaghanisms based on types
reject any program that contains an insecure subprogramwefsaw in examples (0)—
(3) of section 1, a secure program may contain an insecungregiam. In contrast,
with a semantic approach like ours, it is possible to idgrgifich programs as being
secure. Another problem with such approaches is that theglifficult to use for rea-
soning about programs that leak information via termimmabehaviour. (Volpano and
Smith [VS97a] have attempted to extend their type-basetbagh to handle termina-
tion behaviour. However, their type system rejects any @nogthat mentions: in a
loop guard. Such an approach seems terribly restrictive.)

6.1 Approaches based on data flow analyses

The key idea behind approaches based on data flow analysesrémsform a given
program S into a programS’ that provides a simpler representation of the possible
data flows in programS . This is done as follows. (We assume, as in the previous
section, that we are given a lattice of security classes.g¥ery variablez in program

S, program S’ contains a variable:’ , representing the highest security class of the
values used in computing the current value for To deal with implicit flows, S’

also contains a special variablecal’ , representing the lowest security class of the
values used to compute the guards that led to execution afuvent instruction.For

14

example, for every assignment statemenfSirof the form z := y + 2z , S’ contains
a corresponding statement

2’ :=19y" 12" 1 local’
For a conditional statement i§ such as
ifr=y—S00z<0— 811
S’ contains a corresponding statement

var old := local’ in
local' :=local' 1 z' 14" 1 2'
sif true — S0’ U true — S1' fi
; local’ := old
end

where S0’ and S1’ are the statements 5’ that correspond taS0 and S7 . If

a program .S has the variableg; and i belonging to the security classes low and
high (denotedL and T, respectively, whereL < T), then“ S is secure” can be
expressed as the following Hoare triple ¢h:

{K'<L AN KWST A local' <L} S {K <1} 27)

The first data flow analysis approach of this kind was given bgmws and Re-
itman [AR80], whose treatment also dealt with communi@asequential processes.
Banatreet al. [BBLM94] used a variation of the method described above #tt@impts
to keep track of the set of initial variables used to produeaae rather than only the se-
curity class of the value. They also developed an efficiegdréthm for their approach,
similar to data flow analysis algorithms used in compilers] attempted a proof of
soundness. (Unlike our description above, Andrews andigitused the deterministic
if then else construct rather than Dijkstra’sf fi construct. Banatret al. used the
if fi construct, but, as Volparet al. point out, their soundness theorem is actually false
for nondeterministic programs [VS196].)

The data flow analysis approach can provide more precisim tie type system
approach. For example, the approach certifies programs\@§13. However, the ap-
proach still rejects some secure programs that our appndkchbertify. This comes
about because of two reasons. The first reason is that thenemaf operators like
+ and — are lost in the rewriting ofS into S’. Thus a program like (2), which is
secure on account of that — h = 0, is rejected by the data flow analysis approach.
The second reason is that guards are replaceti-by in the rewriting of S into S’ .
Thus, a program like (3), whose security depends on wherralargn reach a certain
statement, is rejected.

One way to improve on this approach is to augment it with adogs suggested
by Andrews and Reitman [AR80]. Instead of rewriting prograirinto S’ , one super-
imposes new variablesi(, h', local') and their updates onto progra®, and then
reasons abouf using the Hoare triple (27) but witly' instead of S’ . A consequence
of this approach is that one can rule out some impossiblea@quaths, such as the one
in program (3).

15

6.2 The use of determinism

It has been noted elsewhere that “semantic models alwaye imgHicit assumptions
about what sort of things are interesting about a procedsdeur” [Ros95]. In the
context of security, these assumptions specify what weidensbservable by the ad-
versary. We argued in section 2 that our definition can be tsedodel adversaries
that exploit covert flowsd.g, adversaries monitoring resource usage) by appropriately
choosing the low-security variables. There is, howeveg, subtle issue that arises in
the context of nondeterminism: security is not preserveddfipement. For example,
the secure program “assign #o an arbitrary value” is refined by the insecure program
“k := h". Since sequential programs are often implemented by refitheir nonde-
terminism, this leads to the undesirable situation in wiaigecure program is rendered
insecure by its implementation.

There are two ways of addressing this issue. The first is bygmizing that re-
finements are a concern only if the adversary is aware of hey #ne made. If we
take the position that the adversary has absolutely no ledyd of how a program is
refined during implementation (or how nondeterministicicke are resolved during
execution), we can assert that its observations reveal fooniation about the initial
value of A . The second way of addressing the issue is by noting that ribielgm
does not arise for deterministic programs, since the lateemaximal in the refinement
ordering. Thus we can avoid the difficulty by requiring thatwsre programs be deter-
ministic. ! This latter approach is similar to the one advocated by Raseho gives
several characterizations (corresponding to differeseolational models) for the se-
cure information flow property for CSP processes. He makesrsupsive argument
for requiring determinism by showing that these charazigions are all equivalent for
deterministic processes.

7 Summary

We have presented a simple and new mathematical charatieniof what it means

for a program to have secure information flow. The charazaéidn is general enough
to accommodate reasoning about a variety of covert flow&ydiveg nontermination.

Unlike previous methods, which were based on type system<ampiler data flow

analysis techniques, our characterization is in terms ofjfam semantics, thus it is
more precise than these syntactic approaches. We are tyiirerestigating ways of

using our characterization as a basis for developing a nmécdity-assisted technique
for verifying secure flow.

AcknowledgmentalVe are grateful to the following colleagues for sharingtivesights
and comments on our work: Martin Abadi, Ernie Cohen, RutgeDijkstra, Mark
Lillibridge, Jayadev Misra, Greg Nelson, Raymie Stata, tiembers of the Austin
Tuesday Afternoon Club, the participants at the SeptemB@r Eession of the IFIP
WG 2.3 meeting in Alsace, France, and the four anonymousaese

! Actually, it suffices to place the weaker requirement thagpams be deterministic with respect
to the low-security variables in the following sense: thiéahstate determines the final value
of k .

16

References

[AR80] Gregory R. Andrews and Richard P. Reitman. An axiamapproach to informa-
tion flow in programs ACM Transactions on Programming Languages and Systems
2(1):56-76, January 1980.

[BBLM94] Jean-Pierre Banatre, Ciaran Bryce, and DaneMeétayer. Compile-time detection
of information flow in sequential programs. Rroceedings of the European Sym-
posium on Research in Computer Securityges 55-73. Lecture Notes in Computer
Science 875, Sprinter Verlag, 1994.

[BLP73] D. E. Bell and L. J. La Padula. Secure computer systevfathematical founda-
tions and model. Technical Report M74-244, MITRE CorpamatiBedford, Mas-
sachusetts, 1973.

[DD77] Dorothy E. Denning and Peter J. Denning. Certifiaatid programs for secure infor-
mation flow. Communications of the ACN0(7):504-513, July 1977.

[Den76] Dorothy E. Denning. A lattice model of secure infation flow. Communications of
the ACM 19(5):236-243, May 1976.

[Dij76] Edsger W. Dijkstra.A Discipline of ProgrammingPrentice-Hall, Englewood Cliffs,
NJ, 1976.

[DS90] Edsger W. Dijkstra and Carel S. Scholtéredicate Calculus and Program Seman-
tics. Texts and Monographs in Computer Science. Springer-yeta90.

[Gas88] Morrie GasseBuilding a secure computer systevfan Nostrand Reinhold Company,
New York, 1988.

[Heh84] Eric C. R. Hehner. Predicative programming Par€bmmunications of the ACM
27(2):134-143, February 1984.

[Lam73] Butler W. Lampson. A note on the confinement proble@ommunications of the
ACM, 16(10):613-615, October 1973.

[RMD94] R.M. Dijkstra. Relational calculus and relatioqabgram semantics. Technical Re-
port CS-R 9408, University of Groningen, Netherlands, 1994

[Ros95] A.W. Roscoe. CSP and determinism in security modgllin Security and Privacy
IEEE, 1995.

[VS97a] Dennis Volpano and Geoffrey Smith. Eliminating envilows with minimum typ-
ings. InProceedings of the 10th IEEE Computer Security Foundatitgkshop
pages 156-168, June 1997.

[VS97b] Dennis Volpano and Geoffrey Smith. A type-basedrapph to program security.
In Theory and Practice of Software Development: ProceedinigSRSOFT '97, 7th
International Joint Conference CAAP/FASIBIlume 1214 ol ecture Notes in Com-
puter Sciencepages 607—621. Springer, April 1997.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvidesound type system for secure
flow analysis.Journal of Computer Security#(3):1-21, 1996.

17

