
Seuss: What the Doctor Ordered

Lorenzo Alvisi Rajeev Joshi Calvin Lin Jayadev Misra

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract

Reconciling the conflicting goals ofsimplicity andeffi-
ciencyhas traditionally been a major challenge in the de-
velopment of concurrent programs.Seuss[16] is a method-
ology for concurrent programming that attempts to achieve
the right balance between these competing concerns. The
goal of Seuss is to permit a disentanglement of the issues
of correctness and efficiency. On the one hand, program-
mers can reason about Seuss programs by assuming a sin-
gle thread of control; on the other hand, implementation
designers can exploit design knowledge in achieving bet-
ter performance. This paper provides a short overview of
the Seuss programming model and describes the main chal-
lenges in designing an efficient implementationof Seuss and
in applying Seuss to large applications.

1. Introduction

Distributed programming has long been recognized as
being far more difficult than sequential programming. The
myriad of interactions that may occur in a distributed sys-
tem introduces a complexity that is far beyond the reach
of the methodologies used for sequential designs. Conse-
quently, most research in distributed programming has been
directed at managing this complexity by limiting the inter-
actions that may occur in a system, and a variety of synchro-
nization mechanisms have been proposed, e.g., semaphores,
monitors, barriers, remote procedures, and atomic transac-
tions. These mechanisms typically differ in the granularity
of interactions they restrict; reducing interactions to large
granularities usually results in programs that are simplerto
understand but less efficient to execute. One of the main
challenges has been the development of a programming
methodology that allows programmers to retain intellectual
control over their programs without having to sacrifice effi-
ciency in implementation.

Seuss [16] represents a departure from traditional ap-

proaches by making a fundamental distinction between the
concurrent and the sequential aspects of distributed pro-
gramming: We believe that concurrent programs are best
structured as large sequential components that interact only
through small but intricate sections of code. Program de-
sign in Seuss involves separately considering (i) the pro-
gramming of each component and (ii) the orchestration of
the executions of these components. We believe that dif-
ferent theories and methodologies are appropriate for these
two tasks. For instance, (i) often involves simple sequen-
tial programming techniques, whereas (ii) usually involves
consideration of component interactions and is often largely
independent of the low-level details of the design.

The goal of Seuss is to disentangle the concerns of cor-
rectness and efficiency. Programmers reason about Seuss
programs as if they were executed with a single thread of
control; this simplifies correctness proofs. At the same time,
implementation designers can exploit design knowledge in
order to execute programs using multiple threads; this leads
to better performance.

The theoretical aspects of Seuss have been described
elsewhere [17], [16]. In this paper, we provide a short
overview of Seuss and identify the main challenges in ap-
plying Seuss to large distributed applications and in devel-
oping efficient implementations of Seuss programs.

2. The Programming Model

The programming model of Seuss is simple. A Seuss
program is a collection ofbox and clonedeclarations. A
box consists of variables, which define local state, and pro-
cedures, which update and access this state. A clone is an
instance of a box. Informally speaking, a box is like a class
(in object-oriented terminology) and a clone is like a class
instance. There are, however, some key differences between
our notion of box and the concept of a class. For instance,
boxes are required to have a certain structure, and the call
graph of a Seuss program is required to be acyclic. We have
chosen a neutral terminology to avoid confusion with these



traditional concepts.
Clones are the only unit of sharing in Seuss. In particular,

there are no shared variables in Seuss programs, and data
is exchanged only through procedure calls on clones. This
leads to a uniform programming model in which there is no
distinction between computation and communication. For
instance, we would model traditional FIFO message com-
munication by declaring a clone with a local sequence vari-
able (for storing messages) and two procedures ‘put’ and
‘get’ for accessing this sequence. This clone could then be
used by other clones in order to exchange data.

Each procedure in a box is either amethodor anaction.
Both methods and actions may change local state and make
calls upon methods of other clones (subject to certain re-
strictions, described in the sections below). The difference
is that methods are invoked only when called by procedures
of other clones, whereas actions are executed autonomously
during program execution. Decisions of when to execute
each action are left to the implementation designer – differ-
ent implementations may choose to execute actions using
different schedules, provided they satisfy the following fair-
ness constraint: every action (from every clone) is executed
infinitely often.

Seuss provides programmers with limited control over
the scheduling of actions. For instance, the sequencing of
two actions has to be programmed explicitly. We feel that
this loss of flexibility is only to be expected when providing
high-level abstractions. As an analogy, we note that ma-
chine language offers complete control over sequential pro-
gram execution: instructions may be treated as data, data
types may be ignored entirely, and control flow may be al-
tered arbitrarily. Such flexibility is appropriate only when
programs are very short, and this flexibility is abandoned
in structured programming languages in favor of readabil-
ity, correctness, modularity, and portability. We believethat
concurrent programming requires even stronger restrictions
if programs are to remain intellectually manageable.

The execution of a Seuss program is conceptually very
simple: every action is executed infinitely often. We place
restrictions on program structure so that each action termi-
nates and can be understood in isolation, without consid-
ering complex interactions with other actions. This allows
programmers to reason about Seuss programs by assuming
that actions are executed one at a time, in a non-interleaved
fashion. In particular, this means that there is no notion of
waiting in Seuss; instead, this notion is replaced by that of
rejection(see Section 2.3 below). As an example, consider
theP operation on a semaphore. Traditionally, when at-
tempted in a state in which the semaphore is unavailable,
the operation causes the caller to wait. In Seuss, the call to
theP operation is rejected if the semaphore is not available
and accepted otherwise. To acquire the semaphore, a caller
repeatedly attempts theP operation until it is accepted.

2.1. Procedures

Our theory makes a fundamental distinctionbetween two
kinds of computations, viz., (i) terminating, ortotal, proce-
dures and (ii) potentially nonterminating, orpartial, pro-
cedures. Traditional sequential techniques – e.g., pre- and
post-conditions – may be used to reason about a total proce-
dure, whereas reasoning about a partial procedure involves
some consideration of interaction with other procedures.
The next two sections describe total and partial procedures
in greater detail.

2.2. Total procedures

A total procedure can be assigned a meaning based only
on its inputs and its outputs. Examples of total procedures
include sorting a list, finding a minimum spanning tree in a
graph, and sending a job to an unbounded print queue. A to-
tal procedure need not be deterministic – e.g.,anyminimum
spanning tree could be returned by a procedure that com-
putes a minimum spanning tree. Furthermore, a total proce-
dure need not be implemented on a single processor. A total
procedure may even be a parallel program that admits asyn-
chronous execution, provided that it is guaranteed to termi-
nate and that its effects may be understood only through its
inputs and its outputs.

Total procedures may call only total procedures. When
a total procedure is called it may either terminate normally
or terminate in a failed state. A failure is caused by a pro-
gramming error and occurs when a procedure is invoked in
a state in which it is not defined, e.g., an attempt to divide
by zero.

2.3. Partial procedures

Unlike a total procedure, a partial procedure cannot be
assigned a meaning based only on its inputs and its out-
puts. Execution of a partial procedure typically involves
interaction with the environment, which may not be ready
for the interaction. Examples of partial procedures include
acquiring a semaphore, getting a message from a channel,
and sending a job to a bounded print queue. Tradition-
ally, such interactions would cause processes to wait, and
would involve consideration of the behavior of other pro-
cesses. However, there is no notion of waiting in Seuss. In-
stead, as described below, we impose some restrictions on
the structure of partial procedures; these restrictions allow
us to understand partial procedures in isolation.

In this paper we restrict ourselves to the following sim-
ple form of partial procedures (the general case is described
elsewhere [16]): p ; h ! S



wherep is theprecondition, h is thepreprocedureandS is
thebodyof the procedure. The precondition is a predicate
on the state of the clone in which the partial procedure is
declared. The preprocedure, which is optional, is a call on a
partial procedure in another clone. The bodyS is required
to terminate, though it may include calls on total procedures
of other clones. Note that the body does not contain any
calls to partial procedures, and there is at most one call in
the preprocedure to another partial procedure. (This condi-
tion ensures that the execution of a partial procedure always
terminates [16].)

A partial procedure responds to each call made upon it
by acceptingor rejecting the call. A partial procedure of
the formp ! S , where the preprocedure is absent, re-
sponds to a call as follows. Ifp holds,S is executed and the
call is accepted; otherwise,S is not executed and the call is
rejected. A partial procedureg of the formp ; h ! S re-
sponds to a call as follows. Ifp holds, thenh is attempted; ifh accepts, theng executesS and accepts. Ifp does not hold,
or if h rejects, theng rejects. (In Section 2.4 we will de-
scribe additional restrictions on program structure that en-
sure that this discipline is well-founded.)

As an illustration of the difference between total and par-
tial procedures, consider theP andV operations of a binary
semaphore. If the semaphore value is0, then the applica-
tion of V changes it to1. But if the semaphore value is1
prior to the application ofV , there are at least four possi-
bilities for a traditional implementation: (i) the operation is
implemented as askip (i.e., the semaphore value remains1
and the operation terminates), (ii) the operation fails, i.e., it
changes the semaphore value arbitrarily either to0 or to 1,
(iii) the operation waits for the semaphore value to become0, and (iv) the operation never terminates. If we adopt im-
plementations (i) or (ii) then we may regard theV operation
as a total procedure. With implementation (iii) the operation
is viewed as a partial procedure. We view implementation
(iv) to be a programming error. By contrast, theP operation
is a partial procedure, which accepts only when the value of
the semaphore is1. A partial procedure that calls uponP
could be of the formtrue ; P ! S :
To simulate waiting, the execution of this procedure is at-
tempted repeatedly as long asP rejects.

2.4. Programs

A program is a finite set of clones, ordered by the ‘calls’
relation on the procedures. The call graph of a Seuss pro-
gram is required to be acyclic; this results in an irreflexive
partial ordering on the clones of a program. A procedure
in a clone may call procedures in clones that are lower in

the partial order. This restriction implies that a partial pro-
cedure at a lowest level is of the formp ! S, where the
preprocedure is absent and the bodyS contains no proce-
dure calls. A total procedure at a lowest level contains no
procedure calls.

We have formally described the model and the notation
elsewhere and have shown how boxes and clones can be
combined to form programs [16].

2.5. Tight Executions

Executions of Seuss programs are classified intotight
and looseexecutions. A tight execution is an infinite se-
quence of steps. In each step, some action of some clone is
chosen and executed. Actions may be chosen in any order,
as long as every action is chosen infinitely often. A tight
execution is easy to reason about because the execution of
each action completes before another action begins. Given
the semantics of the procedures that it calls, the executionof
each action can be understood from its text alone, without
consideration of interference by other procedures.

2.6. Loose Executions

Tight executions are easily implemented on uniproces-
sors. For implementation on multiprocessors, however, it
should be possible to execute non-interfering actions con-
currently. Our notion of non-interference is similar to the
notion of ‘commutativity’ in database theory, where the exe-
cutions of commuting transactions may be interleaved with-
out introducing inconsistencies. The analogue of commuta-
tivity in our theory is calledcompatibility, which, like com-
mutativity, is a relation between actions. Compatibility is,
however, a weaker notion than traditional commutativity;
thus it admits greater concurrency. A formal definition of
compatibility, and further discussion of this topic, can be
found elsewhere [17].

2.7. Examples

In this section, we show two small examples of Seuss
programs, which illustrate the concepts described above.

Message communication

An unbounded FIFO channel is designed as a box with
a local variable of type sequence and two methods. Total
methodput appends an item to the end of the message se-
quence and partial methodget removes and returns the first
item in the message sequence, provided that the sequence is
nonempty. We define a polymorphic version of the channel
where the message type is arbitrary. In theput method we
use a colon (:) in the assignment to denote concatenation.



box FifoChannel of type
var r : seq oftypeinit hif r is initially emptyg
partial method get(x: type) ::r 6= hi ! x; r := r:head; r:tail
total method put(x: type) :: r := r : x

endfFifoChannel of typeg
Task Dispatcher

Next, we show a task dispatcher that is interposed be-
tween a set of clients and a set of servers. A client generates
a sequence of tasks, where each task has a priority between0 andN . A server attempts to process a task whenever it
is idle. However, a server can process tasks below a certain
priority only; this priority is passed as the parameterp to the
procedureget shown below.

It is easy to see that a task dispatcher is nothing but a
glorified channel; it has two methods,put andget. A client
callsput, with a task and priority as parameters, to deposit
a task in the channel. A server callsget, with a parameterp, to obtain a task with the highest priority at or belowp, if
such a task exists. In the following solution,r[i] is a queue
of tasks of priorityi that have been deposited by the clients
but not yet been processed by the servers.

box dispatcher
var r[0::N ]: seq oftaskinit hi; i : 0::N
partial method get(x: task,p : 0::N ) ::fget a task of priorityp or lower,

as close top as possibleg(9 j :: 0 � j � p ^ r[j] 6= hi) !i := p ;
while r[i] = hi do i := i � 1 enddo;x; r[i] := r[i]:head; r[i]:tail

total method put(x: task,p : 0::N ) ::r[p] := r[p] : x
endfdispatcherg
Note that this solution does not guarantee that every task

will eventually be removed. (The above design can, how-
ever, be modified to achieve starvation-freedom.)

3. Related Work

Seuss is an outgrowth of earlier work on UNITY [5]. A
UNITY program contains a set of declarations, which de-
fine the state space, and a set of statements, each of which
may change the program state. A program execution starts
in any of a set of specified initial states. Statements of
the program are chosen for execution in a nondeterminis-
tic fashion, subject only to the unconditional fairness rule
that each statement be chosen infinitely often. Statements

in UNITY are particularly simple – assignments to program
variables – and the model allows few programming abstrac-
tions besides asynchronous compositions of programs. Pro-
grams interact solely through operations on a set of shared
variables.

Seuss is an effort at building a compositional model of
concurrent programming, while retaining some of the ad-
vantages of the simplicity of UNITY. An action is similar
to a UNITY statement, although we expect actions to be
much larger in size. Seuss has more structure than UNITY
in that it distinguishes between total and partial procedures
and imposes an ordering on clones. Executing actions as in-
divisible units would exact a heavy penalty in performance;
therefore, we have developed a theory that permits inter-
leaved executions of action bodies. Unlike UNITY, sub-
programs in Seuss have no shared data, and they interact
through procedure calls only. As in UNITY, the issues of
deadlock, starvation, progress (liveness), etc., are treated by
making assertions about the sequence of states in every ex-
ecution. Also, as in UNITY, program termination is not a
basic concept. A program has reached afixed pointwhen
the preconditions of all actions arefalse; further execution
of the program does not change its state then, and an imple-
mentation may terminate a program execution that reaches
a fixed point. We have developed a simple logic for UNITY
that is currently being extended to Seuss [19, 18, 6, 1].

Seuss also incorporates ideas from serializability theory
and atomic transactions in databases [4], object-oriented
programming [14], Communicating Sequential Processes
(CSP) [9], i/o automata [13, 12], and the Temporal Logic
of Actions (TLA) [11]. A partial procedure is similar to
a database transaction that may commit or abort; the proce-
dure commits to execute if its precondition holds and its pre-
procedure commits, and it aborts (i.e., rejects) otherwise. A
typical abort of a database transaction requires a rollbackto
a valid state. In Seuss, a partial procedure does not change
the program state until it commits, and therefore, there is
no need for a rollback. The form of a partial procedure is
inspired by Hoare’s work on CSP [9]. Our model may be
viewed as a special case of CSP because we disallow nested
partial procedures. Lynch and Tuttle, in their work on i/o
automata, have explored similar issues; however, they do
not advocate a distinction between partial and total proce-
dures, as we do in Seuss. The design of our logic has been
influenced by Lamport’s work on TLA [11], and by the ac-
tion sequences developed by Milner in CCS [15]; Seuss ad-
mits both state-based as well as action-based reasoning and
we intend to exploit both forms.

4. Design Issues

We have designed and implemented a simple prototype
for Seuss on a network of SUN Sparcstations. The sequen-



tial programs in total procedure bodies are written in C++.
A compiler [10] generates C++ code from Seuss programs,
introducing calls to the PVM messaging library [8] wher-
ever communication between clones is required. Each clone
is mapped to a separate process, and each procedure call re-
sults in an exchange of messages between processes. Ac-
tions are scheduled by a singlescheduler, which is also a
process in the system. This scheduler is designed so that (i)
only compatible actions execute concurrently, and (ii) ev-
ery action is executed infinitely often. We have developed
an algorithm for the scheduler that is fully nondeterministic
in the following sense: given a set of actions, along with
a compatibility relation on the set, the algorithm is capable
of generatinganyschedule that satisfies the two restrictions
listed above.

The implementation was intended as a proof of concept
and as a means of identifying the problems that need to be
addressed in order to obtain reasonable efficiency. The pro-
totype is inadequate in several ways:� It provides no way for the programmer to control lo-

cality, which can be critical to achieving good perfor-
mance.� It assigns each clone to a separate process, so com-
munication between clones can be prohibitivelyexpen-
sive.� The scheduler is implemented as a single process,
which becomes a bottleneck when the number of pro-
cesses is large.

We are currently working on an improved implementa-
tion which will address these issues. The remainder of this
section outlines the approach that we plan to follow.

User-Supplied Directives. To provide locality informa-
tion and performance-critical information to the system, we
will allow programmers to add directives to their Seuss pro-
grams. These directives will not affect program correctness.
Instead, they will act as hints, which will aid the implemen-
tation in generating efficient code. This approach preserves
Seuss’s philosophy of separating concerns: programmers
may reason about correctness independently of the presence
of the hints, while sophisticated implementations may still
be able to exploit design knowledge in achieving better per-
formance.

One such directive will describe memory requirements,
which are fundamental to performance when clones encap-
sulate large amounts of data. In traditional approaches, this
information is gathered statically by the compiler; however,
Seuss programs may consist of total procedures written in
several languages – possibly even machine code – and a
compiler will often be unable to determine such informa-
tion from program text alone.

Another type of directive will describe the size of param-
eters to procedures. Since all interactions in Seuss occur
via procedure calls, these directives will describe the granu-
larity of communication, which might help the compiler in
mapping clones to processes.

A third type of directive will describe the environment in
which the program will execute by providing information
such as the types of the processors available in the system,
their relative speeds, their available memory, the network
topology, and bandwidth characterizations. Such informa-
tion may be useful in determining a good mapping in a het-
erogeneous environment.

Multi-threaded Execution. To address the second inad-
equacy, we will use multi-threaded execution with multi-
ple clones residing in each process. A key issue will be
the mapping of clones to processes in order to maximize
concurrency, maximize data locality, and minimize inter-
process communication. Programmer-supplied directives
will be used to improve the compiler’s ability to map clones
and to improve the runtime system’s ability to schedule
them.

Distributed Scheduler. The third fundamental change to
the prototype is to distribute the scheduler. Here, the
fundamental tradeoff is between gathering the information
needed to produce good schedules and minimizing the over-
head of the scheduler. We plan to conduct experiments
to assess the performance impact of good scheduling, af-
ter which we will be able to identify effective heuristics for
choosing the proper level of communication.

Code Reuse. To facilitate code reuse we will extend
Seuss to allow total procedures to be written in sequential
languages such as C and Fortran. Note that the properties of
the Seuss model – viz., that correctness depends only on the
interactions among boxes – are ideally suited to achieving
this goal.

Seuss-Specific Optimizations. We have identified a num-
ber of Seuss-specific optimizations. Our scheduler guaran-
tees unconditional fairness, which states that each action
is executed infinitely often. Within this constraint, there
is wide latitude in choosing which actions to execute. It’s
clearly beneficial to choose actions whose preconditions are
true and whose preprocedures reject, as opposed to actions
which result in spin waiting. In some situations, it may also
be beneficial to cache the state of preconditions. Where pos-
sible, the compiler will determine when these cached values
may change, and scheduling decisions will be made based
on these cached values. Again, directives may play a rôle
in helping the compiler determine how one procedure may
affect the guard of another.



Ideally, if the preconditions of several partial actions
evaluate to true, it would be preferable to attempt calls on
all their preprocedures and execute the action whose call is
accepted first. Unfortunately, this strategy does not work
in general, because the execution of a preprocedure of one
action may falsify the precondition of another action. If the
preprocedure of the latter has caused a state change, then
the assumption of a single thread of control may no longer
be applicable. There is, however, a special case in which
such an optimization works, viz., when the precondition of
a partial procedure is not falsified by execution of other pro-
cedures in the same clone. In such situations, it is possible
to overlap a call to the preprocedure with the execution of
another procedure of the same clone.

Communication Optimizations. The communication
among the set of clones in a program may result in the ex-
change of many small messages if the clones execute on
different processors. One way to minimize the overhead of
the messaging required for these calls is to combine multi-
ple requests into a single message. This is possible when
multiple requests (from multiple clones in a single process)
are destined to the same processor. The receiving process
is then responsible for extracting the set of calls from the
messages it receives. Such optimizations need great care in
order to ensure that they do not adversely affect scheduling
or introduce the possibility of deadlock.

5. Applications

One goal of Seuss is to simplify the design of complex
distributed programs. We are currently applying Seuss to
the following domains.

Cache Coherence Protocols. With the performance ad-
vantage that application-specific protocols can provide [7],
there has been a new demand for designing customized
protocols. However, cache coherence protocols are noto-
riously difficult to debug and serve as prime examples of
distributed applications in which all of the complexity is
concentrated in small sections of code. We have expressed
several caching algorithms in Seuss, with the goal of prov-
ing their correctness. These include the lazy caching algo-
rithm [2], the Sprite cache consistency protocol [20], and
the consistency algorithm used in XFS [3].

Design of Manufacturing Control. One particularly
promising application appears to be the development of
manufacturing controllers. These controllers are config-
ured in a hierarchical manner and are currently designed
in a bottom-up manner. While at the lowest level each con-
troller can be optimized individually to improve efficiency,

this design approach makes it difficult, if not impossible, to
evaluate and tune the controllers with respect to global per-
formance. With Seuss we can provide a methodology for
top-down control, which should make it possible to prove
and optimize controllers at all levels of the hierarchy. We
expect that this will result in better control of the manufac-
turing process with respect to efficiency, cost, and storage
requirements.

6. Conclusion

This paper has provided an overview of Seuss, an on-
going project aimed at simplifying the construction of com-
plex distributed applications. We have presented the Seuss
programming model and identified some key issues that we
are addressing as we attempt to build an efficient Seuss im-
plementation and apply Seuss to large applications. We
are currently working on the correctness proofs of existing
cache consistency algorithms [2], [20], [3]. We also plan
to begin work soon on a more efficient implementation that
incorporates some of the optimizations described in Sec-
tion 4.

References

[1] W. E. Adams. Concurrent programming with a single thread
of control. Dissertation Proposal, University of Texas, De-
partment of Computer Science, 1995.

[2] Y. Afek, G. Brown, and M. Merritt. Lazy caching.ACM
Transactions on Programming Languages and Systems,
15(1):182–205, Jan. 1993.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless network file systems.ACM Trans-
actions on Computer Systems, Feb. 1996.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, Reading, Mass., 1987.

[5] K. M. Chandy and J. Misra.Parallel Program Design: A
Foundation. Addison Wesley, 1988.

[6] K. M. Chandy and B. A. Sanders. Towards compositional
specifications for parallel programs. InDIMACS Workshop
on Specifications of Parallel Algorithms, Princeton, NJ, May
9-11 1994.

[7] B. Falsafi, A. Lebeck, S. Reinhardt, I. Schoinas, M. D. Hill,
J. R. Larus, A. Rogers, and D. Wood. Application-specific
protocols for user-level shared memory. InProceedings of
Supercomputing ’94, pages 380–389, November 1994.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine – A User’s
Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[9] C. Hoare. Communicating Sequential Processes. Prentice
Hall International, London, 1984.

[10] I. H. Krüger. An experiment in compiler design for a con-
current object-based programming language. Master’s the-
sis, University of Texas, Department of Computer Science,
1996.



[11] L. Lamport. The temporal logic of actions.ACM Transac-
tions on Programming Languages and Systems, 16(3):872–
923, May 1994.

[12] N. Lynch, M. Merritt, W. Weihl, and aln Fekete.Atomic
Transactions. Morgan Kaufmann, 1994.

[13] N. Lynch and M. Tuttle. An introduction to input/output
automata.CWI-Quarterly, 2(3):219–246, Sept. 1989.

[14] B. Meyer.Object-Oriented Software Construction. Prentice
Hall international, London, 1988.

[15] R. Milner. Communication and Concurrency. International
Series in Computer Science, C. A. R. Hoare, Series Editor.
Prentice-Hall International, London, 1989.

[16] J. Misra. A discipline of multiprogram-
ming. Work in progress, available online at
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z .

[17] J. Misra. A discipline of multiprogramming. In G. E. Blel-
loch, K. M. Chandy, and S. Jagannathan, editors,Specifi-
cation of Parallel Algorithms, volume 18, pages 357–381,
Providence, RI, 1994. DIMACS (Series in Discrete Mathe-
matics), American Mathematical Society.

[18] J. Misra. A logic for concurrent programming: Progress.
Journal of Computer and Software Engineering, 3(2):273–
300, 1995.

[19] J. Misra. A logic for concurrent programming: Safety.Jour-
nal of Computer and Software Engineering, 3(2):239–272,
1995.

[20] M. Nelson, B. Welch, and J. Ousterhout. Caching in the
Sprite network file system. ACM Trans. Comput. Syst.,
6(1):134–154, Feb. 1988.


