
Toward a Theory of Maximally Concurrent Programs ∗

[Shortened Version]

Rajeev Joshi
Compaq Systems Research Center

Palo Alto, CA

rjoshi@pa.dec.com

Jayadev Misra
The University of Texas at Austin

Austin, TX

misra@cs.utexas.edu

ABSTRACT
Typically, program design involves constructing a program
P that implements a given specification S; that is, the set P
of executions of P is a subset of the set S of executions sat-
isfying S. In many cases, we seek a program P that not only
implements S, but for which P = S. Then, every execution
satisfying the specification is a possible execution of the pro-
gram; we then call P maximal for the specification S. We
argue that maximality is an important criterion in the con-
text of designing concurrent programs because it disallows
implementations that do not exhibit enough concurrency. In
addition, a maximal solution can serve as a basis for deriving
a variety of implementations, each appropriate for execution
on a specific computing platform.

This paper also describes a method for proving the maxi-
mality of a program with respect to a given specification.
Even though we prove facts about possible executions of
programs, there is no need to appeal to branching time log-
ics; we employ a fragment of linear temporal logic for our
proofs. The method results in concise proofs of maximality
for several non-trivial examples. The method may also serve
as a guide in constructing maximal programs.

Categories and Subject Descriptors
D3.3 [Programming Languages]: Language Constructs
and Features—Concurrent Programming Structures; D.1.3
[Programming Techniques]: Concurrent Programming—
Parallel programming

General Terms
Parallel Programs, Concurrency

Keywords
Concurrent Program Design, Maximal Solution

∗(Produces the permission block, copyright information and
page numbering). For use with ACM PROC ARTICLE-
SP.CLS V2.0. Supported by ACM.

1. INTRODUCTION
Traditionally, a program specification is given by safety and
progress properties. A safety property – of the form that
no two neighbors eat simultaneously in a dining philoso-
phers solution – is used to exclude certain undesirable ex-
ecution sequences. A specification with safety properties
alone can be implemented by a program that does nothing;
then, the safety constraints have been implemented by ex-
cluding all non-trivial executions. Therefore, it is necessary
to specify progress properties – of the form that some hungry
philosopher eats eventually – requiring that some execution
sequences be included. Safety and progress requirements
are sufficient for specifying non-trivial sequential program-
ming tasks, but they are not sufficient for concurrent pro-
gram design because, for instance, in the case of the dining
philosophers, the solution may allow only one philosopher
to eat at a time, thus eliminating all concurrency. We pro-
pose a new requirement, called maximality, to ensure that
only the most concurrent executions are included. Thus,
the sequential solution to the dining philosophers problem
will be unacceptable as a solution since it does not meet the
maximality requirement.

Program design, typically, involves constructing a program
P that implements a given specification S; that is, the set
P of executions of P is a subset of the set S of executions
satisfying S. For instance, given a specification to generate
an infinite sequence of natural numbers, any program that
generates a sequence of zeroes implements the specification.
So does the program that generates the natural numbers in
order. In many cases, we seek a program P that not only
implements S – i.e., P ⊆ S – but for which P = S. Then
every execution satisfying the specification S is a possible
execution of P ; we call P maximal for specification S. For
instance, the program that generates a stream of zeroes is
not maximal for the specification to generate an infinite se-
quence of natural numbers; nor is the solution that allows a
single philosopher to eat at a time maximal for the dining
philosophers problem.

There are at least three reasons why we are interested in
maximal solutions. First, as we have remarked above, we
exploit maximality to eliminate those undesirable solutions
for a given specification that restrict concurrency. (Since
a maximal solution admits maximal concurrency, it suffers
from no such restriction.)

Second, we often simulate an artifact by a program and the

latter has to simulate all behaviors of the former; in this case,
the simulation program has to be maximal for the specifi-
cation of the artifact. Such constructions are common in
certain verification methods, such as model-checking. For
instance, consider the problem of proving the correctness of
a protocol for communication over a faulty channel (e.g., the
Alternating Bit Protocol). A typical approach to showing
the correctness of this protocol is to show that the programs
describing the sender and receiver satisfy certain properties
when composed with a program describing the faulty chan-
nel. For such a proof, we clearly require that the program
used for the faulty channel be maximal for its specification.

The third reason for designing a maximal solution is that we
often develop (and prove correct) such a solution, and then
refine it – by eliminating some non-determinism, for instance
– to obtain a program that is actually implemented. This
strategy may be easier than developing the implemented
program directly. A single maximal program for a prob-
lem may be the basis for a family of interrelated programs,
each of which may be appropriate for a different comput-
ing platform. We show several refinements of a maximal
solution for task scheduling in section 5.5.

A maximal solution is, typically, non-deterministic; in many
cases the non-determinism is unbounded.

1.1 Overview of the paper
In this paper, we suggest a method for proving the maxi-
mality of a program with respect to a given specification.
Given a program P to be proven maximal, we have to show
that any sequence of states, σ, meeting the specification is
a possible output of the program. We first construct a con-

strained program, P ′, from P and σ; the constrained pro-
gram retains the structure of P , but its actions are restricted
by guards and augmented by assignments to certain auxil-
iary variables. Next, we show that all fair executions of P ′

produce σ and that any such execution corresponds to a fair
execution of P ; hence, σ is a possible output of P .

Even though we prove facts about possible executions of
programs there is no need to appeal to branching time log-
ics; we employ a fragment of linear temporal logic for our
proofs. The method seems to be quite effective in practice,
resulting in concise proofs for non-trivial examples such as
the task scheduler of section 5. The proposed method may
also serve as a guide in constructing maximal programs from
specifications.

2. PROGRAMS AND THEIR SPECIFICA-
TIONS

2.1 Programming Model
We adopt a programming model based on UNITY [2]. A
program has a set of variables that define its state, an initial

condition which is a predicate over program states, and a
nonempty set of actions, where each action is a relation over
program states.

A program execution is an infinite sequence of the form
τ0A0τ1...τiAiτi+1.. where each τi is a program state and
Ai is an action; τ0 satisfies the initial condition and, for
all i, (τi, τi+1) ∈ Ai. In addition, each execution satisfies

the following fairness requirement: each action appears
infinitely often.

We employ the following notation to describe the program-
ming examples in this paper. The initial condition is defined
in an initially section where the initial values of some of the
variables are declared; the uninitialized variables have ar-
bitrary initial values. The program actions are written as
guarded commands, preceded optionally by a label, as in

α :: g → s .

Execution of α has no effect in a state if g does not hold in
that state; otherwise s is executed. We assume that execu-
tion of s terminates from any state where g is defined.

As an example, consider the following program having two
integer variables x,n.

Program FairNatural

var x,n: integer
initially n = 0
α:: n := n + 1
β:: x,n := n, 0

end {FairNatural}

We claim that x is assigned only natural numbers as values,
and x is infinitely often positive. Additionally, we can show
that any sequence of states satisfying these two properties
is the result of some execution of this program. Thus, this
program is maximal for the specification that requires gen-
eration of an infinite sequence of natural numbers where,
eventually, a positive number is generated. 1

2

2.2 Specifications
A specification is a set of program properties. We use the
following operators of UNITY to specify the properties; see
[2, 7, 8] for details. In the following, p, q are predicates over
the program states and s is quantified over the actions of
the program.

Safety properties are expressed using co and its derivatives.
Property p co q holds for a program if in every execution
a state in which p holds is followed immediately by a state
in which q holds. A program has the property stable p if
p continues to hold once it becomes true, and invariant p
holds in a program if p is always true. For example, program
FairNatural has the property stable x ≥ 0, i.e., once x is
nonnegative, it stays nonnegative.

Progress properties are described using the relation 7→ (leads-
to): p 7→ q means that any state in which p holds is even-
tually followed by a state in which q holds. This operator
is defined inductively; see [2] for details. For example, the
program FairNatural of section 2.1 has the progress prop-
erty true 7→ x > 0, i.e., if true holds now, eventually x
becomes positive.

1Consequently, this program can assign arbitrary natural
numbers to x, i.e., it has unbounded non-determinism.

3. MAXIMALITY
Given a program P and a specification S it is possible to
show that P satisfies S (i.e., P meets all the properties in
S) using the UNITY logic [8, 7] (as outlined in section 2.2).
To prove maximality, we show that any sequence that sat-
isfies S may be obtained from an execution of P , in the
sense described below. First, we define what it means for
an infinite sequence σ of states to satisfy S. A sequence
σ satisfies S if it satisfies each property in S, as described
below. We consider only the following types of properties
in S: initially p, p co q and p 7→ q. In the following
description, σi denotes element i of σ (with σ0 denoting the
first element), and p(σi) means that p holds in the state σi.

σ satisfies initially p means p(σ0) holds.
σ satisfies p co q means (∀ i :: p(σi) ⇒ q(σi+1)).
σ satisfies p 7→ q means (∀ i :: (∃ j : i ≤ j : p(σi) ⇒ q(σj))).

Given an execution τ of a program, and a subset V of the
set of program variables, the “projection of τ over V ” is the
(infinite) sequence of states obtained by removing the action
labels from τ , and projecting the resulting sequence of states
to the set V .

For any execution τ , subset V of program variables, and
sequence σ of states over V , we say that “τ reduces to σ
over V ” provided the projection of τ over V is equivalent to
σ upto finite stuttering [5].

For example, in program FairNatural , the fragment of the
execution sequence (1, 0)α(1, 1)α(1, 2)β(2, 0)α(2, 1)β(1, 0) –
where each state is a pair of values, of the form (x, n) –
reduces to the fragment 121, and also to 1121, over the set
of variables {x}.

Definition. Program P is maximal for specification S and
variable set V provided P satisfies S and for any sequence σ
satisfying S there is an execution τ of P such that τ reduces
to σ over V .

To keep the notation simple, we will henceforth assume that
V is understood in the specification, and we will write “P
is maximal for specification S”.

3.1 Constrained Program
We next describe a method to prove maximality of a pro-
gram P for a specification S. Let σ be a sequence of states
that satisfies S; we have to show that some execution of P
reduces to σ. Our strategy is to construct a constrained pro-
gram P ′ such that all executions of P ′ reduce to σ, and all
executions of P ′ correspond to fair executions of P , in the
sense defined later.

The constrained program P ′ is constructed from P as fol-
lows.

1. The variables of P are retained in P ′; they are called
the original variables.

2. New constants, called chronicles, are introduced in P ′.
Chronicles are like history variables: they encode the

given state sequence σ. They are not altered in the
constrained program; their values are only read. There
may be several chronicles, one corresponding to each
variable of the specification, to encode the sequence of
values taken on by the variables during a computation.

3. Additional variables, called auxiliary variables, are in-
troduced in P ′. Auxiliary variables are used in the
proof. In our examples, we use a special auxiliary vari-
able, which we call a point, to show the position in the
chronicle that matches the current state of P ′.

4. An action α of P is modified to α′ :: g → α ; β where
g is a guard that may name any variable of P ′, and β,
which is optional, may assign only to the auxiliary vari-
ables. Action α′ is an augmented action corresponding
to α and g is the augmenting guard of α′. Augmenting
an action may eliminate some of the executions of P .
Note: If α has a guard h then, effectively, α′ has guard
g ∧ h.

5. Constrained program P ′ may also include additional
actions of the form g → β where g names any variable
of P ′ and β assigns only to the auxiliary variables.

6. The initial condition of P ′ implies the initial condition
of P .

Note that in P ′, chronicles remain unchanged during exe-
cution, since they appear only in guards and other tests.
Auxiliary variables appear only in guards (and other tests)
and in assignments to themselves. Original variables of P
are assigned values exactly as they were assigned in P , ex-
cept that some of the variables that were uninitialized in P
may be initialized in P ′.

3.2 Example
Consider the program FairNatural of section 2.1. To prove
its maximality for the specification

stable x ≥ 0, and true 7→ x > 0

choose any sequence X that satisfies the specification, i.e,

(∀ i :: Xi ≥ 0 ⇒ Xi+1 ≥ 0), and
(∀ i :: (∃ j : i ≤ j : Xj > 0)).

Now, construct a constrained version FairNatural ′ of the
program, by including the chronicle X and an auxiliary
variable j denoting the point. The augmented actions corre-
sponding to α and β are α′ and β′. There are no superposed
actions.

Program FairNatural ′

var x,n: integer; X: sequence of integer; j: integer
initially n = 0 ∧ x = X0 ∧ j = 1
α′:: n < Xj → n := n + 1
β′:: n = Xj → x, n := n, 0; j := j + 1

end {FairNatural ′}

We claim that in every fair execution of FairNatural ′ the
sequence of values assigned to x is X, i.e., invariant j >
0 ∧ x = Xj−1. We also show that every fair execution of
FairNatural ′ corresponds to a fair execution of FairNatural .
Hence, X is the outcome of a possible execution of FairNatural .

3.3 Proving Maximality
We describe the proof steps required to establish the max-
imality of a program for a given specification. The con-
strained program inherits all safety properties of the original
program since the assignments to the original variables are
not modified. We have to establish the following facts in the
constrained program.

1. Chronicle Correspondence: Show that every fair ex-
ecution of the constrained program assigns a sequence
of values to the original variables that match the values
in the respective chronicles.

• (Safety) Show that the values of the original vari-
ables are identical to those of the chronicles at
the current point (recall that the point is, typi-
cally, given by an auxiliary variable, such as j in
FairNatural). This proof obligation is stated as
an invariant of the constrained program.

• (Progress) The current value of the point will be
incremented eventually. (This often follows from
the progress proof for execution correspondence.)

2. Execution Correspondence: Show that every fair ex-
ecution of the constrained program corresponds to a
fair execution of the original program such that both
executions compute the same values in the original
variables.

• (Safety) The truth of the augmenting guard of
each action is preserved by all other actions. That
is, the augmenting guard of α′ may be falsified by
executing α′ only.

This condition is met trivially if all augmenting
guards are pairwise disjoint; in this case, each
guard is falsifiable only by the action it is associ-
ated with.

• (Progress) Show that each augmenting guard is
true infinitely often.

Example
For FairNatural ′ our proof obligations are as follows. The
detailed proof is given in the full paper [4].

1. Chronicle Correspondence:

(Safety) invariant j > 0 ∧ x = Xj−1.

(Progress) j = J 7→ j = J + 1, for any natural J .

2. Execution Correspondence:

(Safety) n < Xj is preserved by β′, and n = Xj is
preserved by α′. (These follow because the guards are
disjoint.)

(Progress) true 7→ n < Xj , true 7→ n = Xj .

We omit justification of these proof rules due to space con-
straints; see the full paper [4] for details.

4. RANDOM ASSIGNMENT
A maximal solution is, typically, highly non-deterministic.
In our previous example, FairNatural , we exploited the non-
determinacy of action execution; an arbitrary natural num-
ber is computed because n is incremented an indeterminate
number of times. In many cases, it is convenient to have
non-determinacy in the code itself. To this end, we intro-
duce random assignment statements of the form

x :=? st p

where variable x is assigned any value such that predicate
p holds after the assignment. It is the programmer’s re-
sponsibility to ensure that this assignment is feasible. A
refinement of this statement will assign a specific value to x
that satisfies p. For instance, for integer x

x :=? st x > ′x,
where ′x denotes the value of x before the assignment

increases the value of x arbitrarily.

There is one caveat in constructing these proofs. Earlier, we
had said that a constrained program inherits all safety prop-
erties of the original program. This is true only if the ran-
dom assignments have been correctly constrained. There-
fore, it cannot be assumed that the constrained program
inherits the safety properties until the correctness of these
assignments in the constrained program have been shown.
In particular, the proof of correctness of these assignments
can not assume any safety properties of the original pro-
gram; any such assumption has to be proven explicitly in
the constrained program.

5. A TASK SCHEDULER
In this section, we consider a scheduling problem in which
concurrency is essential; the requirement of concurrency can
be succinctly stated using maximality. The following schedul-
ing problem is from [9]. We are given a finite number of tasks

and a compatibility relation among the tasks. Two tasks may
be concurrently executed provided they are compatible. It
is given that an executing task will terminate eventually.
The goal is to design a task scheduler that repeatedly se-
lects tasks for execution so that: (1) only compatible tasks
are executed concurrently, and (2) each task is executed in-
finitely often.

The following abstraction captures the essence of the schedul-
ing problem. We are given a simple, finite undirected graph
in which there are no self-loops; the graph need not be con-
nected. Each node in the graph is black or white; all nodes
are initially white. In this abstraction, a node denotes a
task and a black node an executing task. Two nodes are
neighbors if they are incompatible, i.e., not compatible. We
are given that every black node becomes white eventually,
i.e., each task terminates. It is required to devise a coloring
(scheduling) strategy so that

• No two neighbors are simultaneously black (i.e., only
compatible tasks may be executed simultaneously).

• Every node becomes black infinitely often.

Note that the scheduler can only blacken nodes; it may not
whiten a node.

A simple scheduling strategy is to blacken a single node, wait
until it is whitened, and then blacken another node. Such a
strategy implements the first requirement trivially because
there is at most one black node at any time. The second
requirement may be met by blackening the nodes in some
fixed, round-robin order. Such a protocol, however, defeats
the goal of concurrent execution of tasks. So, we impose
the additional requirement that the scheduling strategy be
maximal: any valid blackening of the tasks may be obtained
from a possible execution of our scheduler. By suitable re-
finement of our maximal scheduler we derive a centralized
scheduler and a distributed scheduler, as described in section
5.5.

5.1 Specification
Let b denote the set of black nodes at any stage in the ex-
ecution. For sets x, y and a node v, we write x = y + v to
denote that v /∈ y ∧ x = y ∪ {v}.

S0. initially b = ∅.
S1. (∀ u, v : u neighbor v : ¬(u ∈ b ∧ v ∈ b)).
S2. b = B co b = B ∨ (∃ v :: b = B + v ∨ B = b + v),

for any B.
S3. For all v, true 7→ v ∈ b and true 7→ v /∈ b.

The specification S0 states that initially no tasks are ex-
ecuting; S1 states that neighbors are never simultaneously
black; S2 says that in a step at most one node changes color.
In S3, true 7→ v /∈ b is established by the tasks themselves
(each task terminates, and, hence, becomes white, eventu-
ally), and the scheduler has to implement the remaining
progress property, true 7→ v ∈ b.

5.2 A Scheduling Strategy
Assign a natural number, called height, to each node; let
H [u] denote the height of node u. The predicate u.low holds
if the height of u is smaller than all of its neighbors, i.e.,

u.low ≡ (∀ v : u neighbor v : H [u] < H [v]).

The scheduling strategy is to set b to ∅ initially, and the node
heights in such a way that neighbors have different heights.
Then, the following steps are repeated.

• (Blackening Rule) Eventually consider each node, v,
for blackening; if v /∈ b ∧ v.low holds then blacken v.

• (Whitening Rule) Simultaneous with the whitening of
a node v, increase H [v] to a value that differs from
H [u], for all neighbors u of v.

Formally, the coloring strategy is described by the following
program. There is an action add(v), for each node v, that
adds v to b provided v /∈ b ∧ v.low. The termination of
task v is simulated by remove(v), that removes v from b
and increases H [v] to a value that differs from H [u], for all
neighbors u of v.

Program Scheduler

var u, v: node; b: set of node
var H : array item of natural
initially b = ∅ ∧ (∀ u, v : u neighbor v : H [u] 6= H [v])
〈∀v::

add(v):: v /∈ b ∧ v.low → b := b ∪ {v}
remove(v):: v ∈ b → b := b − {v};

H [v] :=? st H [v] > ′H [v]
∧ (∀ u : u neighbor v : H [u] 6= H [v])

〉
end {Scheduler}

Note: ′H [v] is the value of H [v] before the assignment.

5.3 Correctness of the Scheduling Strategy
We show that neighbors have different heights at all times,
i.e.,

P0. invariant (∀ x, y : x neighbor y : H [x] 6= H [y]).

Proposition P0 holds initially. If P0 holds prior to the execu-
tion of add(v) then it holds following the execution, because
add(v) does not affect heights. If P0 holds prior to the exe-
cution of remove(v) it holds afterwards, because only H [v]
changes and H [v] 6= H [u], for any neighbor u of v, following
remove(v).

Proof of S0
Follows from the initialization.

Proof of S1
The coloring strategy described above maintains the follow-
ing invariant: for all v, v ∈ b ⇒ v.low. Observe that this
proposition holds initially since all nodes are initially white.
A blackening step (add) preserves the proposition because
v.low is a precondition for blackening. A whitening step
(remove) preserves the proposition because the antecedent
of the proposition becomes false.

From this invariant, if u, v are both black then they are both
low, and from the definition of low, it follows that u, v are
not neighbors. Therefore, neighbors are not simultaneously
black.

Proof of S2
In add(v), the assignment b := b ∪ {v} has the precondition
v /∈ b. In remove(v), the assignment b := b − {v} has the
precondition v ∈ b. Hence, S2 is satisfied.

Proof of S3
We show that every node becomes black infinitely often in
every execution. Suppose that there is a node x that be-
comes black only a finite number of times in a given exe-
cution. Each blackening and the subsequent whitening in-
creases the height of a node. Therefore, if some neighbor y
of x becomes black infinitely often then its height will even-
tually exceed H [x], establishing ¬y.low, and y will never
be blackened subsequently. Hence, every neighbor of x is
blackened finitely often. Applying this argument repeat-
edly, no node connected to x can become black infinitely

often. Therefore, beyond some stage, q, in an execution, all
nodes in the component of the graph to which x belongs
will remain white forever. Let v be a node with the small-
est height in this component at q in the execution; since all
nodes remain white beyond q their heights do not change
and v remains a node with the smallest height. Whenever
v is considered for blackening beyond q, it will meet all the
conditions for blackening (v is white and v.low holds); thus
v will be blackened, contradicting the conclusion that v re-
mains white forever beyond q.

The proof by contradiction, given above, is typical of the
style in which many concurrent algorithms are proven in
the literature. We present an alternative proof, based on the
style of UNITY, that avoids arguments by contradiction; see
appendix B.

5.4 Proof of Maximality
Let z be a sequence of sets, denoting a possible sequence
of values of b in an execution; assume that z is stutter-free,
i.e., successive values in z are distinct. Let z satisfy the
specification (S0, S1, S2, S3), i.e., (S0′, S1′, S2′, S3′) hold.

S0′. z0 = ∅.
S1′. For all i, (∀ u, v : u neighbor v : ¬(u ∈ zi ∧ v ∈ zi)).
S2′. For all i, (∃ v :: zi+1 = zi + v ∨ zi = zi+1 + v).
S3′. For all v, (∀ i :: (∃ j : i ≤ j : v ∈ zj)),

and (∀ i :: (∃ j : i ≤ j : v /∈ zj)).

We create the following constrained program that includes a
variable t, denoting the current point of computation. The
variable u.next is an abbreviation for the next value, j,
above t where u is in zj . Formally,

u.next = (min j : j > t ∧ u ∈ zj : j).

Note that u.next is always defined, on account of S3′.

Program Scheduler ′

var u, v: node; b: set of node; t: integer
initially b = ∅ ∧ t = 0 ∧ (∀ v :: H [v] = v.next)
〈∀v::

add′(v):: zt+1 = zt + v →
v /∈ b ∧ v.low → b := b ∪ {v}; t := t + 1

remove′(v):: zt = zt+1 + v →
v ∈ b → b := b − {v}; H [v] := v.next;

t := t + 1
〉

end {Scheduler ′}

5.4.1 Invariants of the Constrained Program
The following invariants hold for Scheduler ′. The variable v
is quantified over all nodes.

P1. b = zt.
P2. zvh = zvh−1 + v where vh denotes H [v]
P3. (∀ u, v : u neighbor v : H [u] 6= H [v]).
P4. v.next ≥ H [v] ∧ v.next > t.
P5. (H [v] = v.next) ≡ v /∈ b.

Proof of P1
Initially, b = ∅, t = 0, and from (S0′) z0 = ∅. Each action
increments t and modifies b appropriately.

Proof of P2
This follows from the text of Scheduler ′ and S2′.

Proof of P3
This property is similar to invariant P0 proved for Scheduler .
However, we can not assert that this property is inherited
by Scheduler ′ until we show that the random assignment is
correctly implemented. Therefore, we have to construct a
new proof. Let uh, vh denote H [u], H [v] respectively, and
suppose that uh = vh. Then, from P2

zvh = zvh−1 + v ∧ zuh = zuh−1 + u
⇒ {By assumption, uh = vh}

zuh = zuh−1 + v ∧ zuh = zuh−1 + u
⇒ {Set theory}

u = v

Thus, for distinct nodes u, v, we have H [u] 6= H [v]. Hence,
the same result applies for neighbors u, v.

Proof of P4
To see the first conjunct, note that initially, (∀ v :: H [v] =
v.next). The only assignment to H [v] is H [v] := v.next in
remove′(v); so v.next ≥ H [v] is preserved by this assign-
ment. Also, v.next is monotone in t; therefore, v.next never
decreases in Scheduler ′ because t never decreases.

The second conjunct follows from the definition of v.next.

Proof of P5
Initially P5 holds because b is ∅ and (∀ v :: H [v] = v.next).
First, we show that P5 is preserved by the execution of
add′(v).

Define v.next.i = (min j : j > i∧v ∈ zj : j). Thus, v.next =
v.next.t. Rewrite condition P5 as (H [v] = v.next.t) ≡ v /∈ b.
This holds as a postcondition of the assignments

b := b ∪ {v}; t := t + 1

provided H [v] 6= v.next.(t + 1) holds as a precondition. We
show below that the precondition of add′(v), zt+1 = zt +v∧
v /∈ b ∧ v.low and P5, implies H [v] 6= v.next.(t + 1).

zt+1 = zt + v ∧ v /∈ b
⇒ {From the definition of v.next,

(zt+1 = zt + v) ⇒ (v.next = t + 1)}
v.next = t + 1 ∧ v /∈ b

⇒ {P5: (H [v] = v.next) ≡ v /∈ b}
H [v] = t + 1

⇒ {from definition, v.next.(t + 1) > t + 1}
H [v] 6= v.next.(t + 1)

It can be shown that H [u] and u.next are unaffected by
the execution of add′(v), for v 6= u. Also, from the text
of remove′(v) it is seen that v /∈ b ∧ (H [v] = v.next) is
established.

5.4.2 Rewriting the guard of add′(v)
We show from the given invariants that the augmenting
guard of add′(v), zt+1 = zt + v, implies the original guard,
v /∈ b ∧ v.low. Hence, the original guard may be dropped in
the constrained program. This result is needed for the proof
of progress in chronicle correspondence; see (2) of section
5.4.4.

From b = zt (see P1) and zt+1 = zt + v, we have v /∈ b.
We show that v.low holds, i.e., for neighboring nodes u, v,
H [v] < H [u].

zt+1 = zt + v
⇒ {b = zt from P1}

v /∈ b ∧ v /∈ zt ∧ v ∈ zt+1

⇒ {Definition of v.next}
v /∈ b ∧ v.next = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1

⇒ {From P5, (H [v] = v.next) ≡ v /∈ b}
H [v] = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1

⇒ {u, v are neighbors,
v ∈ zt+1 ⇒ u /∈ zt+1, from S1′}

H [v] = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt+1

⇒ {v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt+1 from S2′, u /∈ zt}
H [v] = t + 1 ∧ v /∈ zt ∧ v ∈ zt+1

∧ u /∈ zt ∧ u /∈ zt+1

⇒ {from P1, b = zt, from P4, u.next > t, and
from P5, (H [u] = u.next) ≡ u /∈ b}

H [v] = t + 1 ∧ H [u] = u.next ∧ u.next > t
⇒ {H [v] = t + 1 ∧ H [u] > t. Apply }

H [v] < H [u]

5.4.3 Correctness of the Implementation of Random
Assignment

The random assignment

H [v] :=? st H [v] > ′H [v]
∧ (∀ u : u neighbor v : H [u] 6= H [v])

is implemented in the constrained program by

H [v] := v.next.

The precondition of the assignment, zt = zt+1 +v and (from
P1) b = zt, imply that v ∈ b. Hence, from P4 and P5,
H [v] < v.next prior to the assignment; now H [v] = v.next
after the assignment, thus establishing H [v] > ′H [v]. The
condition (∀ u : u neighbor v : H [u] 6= H [v]) follows from
P3.

5.4.4 Proof of Chronicle Correspondence
1. (Safety) b = zt follows from P1.

2. (Progress) t = N 7→ t = N + 1, for any natural N : ex-
actly one guard of Scheduler ′ holds at any stage in the
computation because the guards are disjoint and their
disjunction is true. Execution of any action whose
guard is true increments t.

5.4.5 Proof of Execution Correspondence
1. (Safety) Guards of all the actions are disjoint.

2. (Progress) We have to show
true 7→ zt+1 = zt + v, and
true 7→ zt = zt+1 + v.

We sketch a proof. From S3′ we can deduce that
(∀ i :: (∃ j : i ≤ j : zj+1 = zj + v)), and
(∀ i :: (∃ j : i ≤ j : zj = zj+1 + v)).

From (2) of section 5.4.4, t assumes values of successive
natural numbers. Therefore, eventually, zt+1 = zt + v
and also eventually, zt = zt+1 + v.

5.5 Refining a Maximal Solution: Implemen-
tation of the Scheduling Strategy

We consider the situation where each task (node) is executed
on a separate processor. First, we show how a central sched-
uler may schedule the tasks given the compatibility relation.
Next, we show how the scheduling may be distributed over
the processors.

5.5.1 Central scheduler
A central scheduler maintains a list of nodes and their cur-
rent colors and heights. Periodically, it scans through the
nodes and blackens a node v provided v.low ∧ v /∈ b holds.
Whenever it blackens a node it sends a message to the ap-
propriate processor specifying that the selected task may
be executed. Upon termination of the task, the processor
sends a message to the scheduler; the scheduler whitens the
corresponding node and increases its height, ensuring that
no two neighbors have the same height. The scheduler may
scan the nodes in any order, but every node must be con-
sidered eventually.

This implementation may be improved by maintaining a set,
L, of nodes that are both white and low, i.e., L contains
all nodes v for which v /∈ b ∧ v.low holds. The scheduler
blackens a node of L and removes it from L. Whenever a
node x is whitened and its height increased, the scheduler
checks x and all of its neighbors to determine if any of these
nodes qualify for inclusion in L; if some node, y, qualifies
then y is added to L. It has to be guaranteed that every
node in L is eventually scanned and removed; one possibility
is to keep L as a queue in which additions are made at the
rear and deletions from the front. Observe that once a node
is in L it remains white and low until it is blackened.

5.5.2 Distributed scheduler
The proposed scheduling strategy can be distributed so that
each node blackens itself eventually if it is white and low.
The nodes communicate by messages of a special form, called
tokens. Associated with each edge (x, y) is a token. Each
token has a value, a positive integer equal to |H [x] − H [y]|.
This token is held by either x or y, whichever has the smaller
height.

It follows then that a node that holds all incident tokens
has a height that is smaller than all of its neighbors; if such
a node is white, it may color itself black. A node, upon
becoming white, increases its height by a positive amount
d, effectively reducing the value of each incident token by
d (note that such a node holds all its incident tokens, and,
hence, it can alter their values). The quantity d should

be different from all token values so that neighbors will not
have the same height, i.e., no token value becomes zero after
a node’s height is increased. If the value of token (x, y)
becomes negative as a result of reducing it by d, indicating
that the holder x now has greater height than y, then x
resets the token value to its absolute value and sends the
token to y.

Observe that the nodes need not query each other for their
heights, because a token is eventually sent to a node of a
lower height. Also, since the token value is the difference in
heights between neighbors, it is possible to bound the token
values whereas the node heights are unbounded over the
course of the computation. Initially, token values have to be
computed and the tokens have to be placed appropriately
based on the heights of the nodes. There is no need to keep
the node heights explicitly from then on.

We have left open the question of how a node’s height is to
be increased when it is whitened. The only requirement is
that neighbors should never have the same height. A par-
ticularly interesting scheme is to increase a node’s height
beyond all its neighbors’ heights whenever it is whitened;
this amounts to sending all incident tokens to the neighbors
when a node is whitened. Under this strategy, the token
values are immaterial: a white node is blackened if it holds
all incident tokens and upon being whitened, a node sends
all incident tokens to the neighbors. Assuming that each
edge (x, y) is directed from the token-holder x to y, the
graph is initially acyclic, and each blackening and whiten-
ing move preserves the acyclicity. This is the strategy that
was employed in solving the distributed dining philosophers
problem by Chandy and Misra [1]; a black node is eating and
a white node is hungry; constraint (S1) is the well-known re-
quirement that neighboring philosophers do not eat simul-
taneously. Our current problem has no counterpart of the
thinking state, which added a slight complication to the so-
lution in [1]. The tokens are called forks in that solution.

6. SUMMARY
We have described the notion of maximality, which rules
out implementations with insufficient non-determinism. A
maximal program for a given specification has (upto stut-
tering) all the behaviors admitted by the specification. We
showed several examples of maximal solutions, including a
fair unordered buffer and a fair task scheduler. Notions sim-
ilar to maximality have been studied elsewhere in the liter-
ature, e.g., the various flavors of bisimulation due to Milner
and others [6]. However, unlike bisimulation, which relates
two programs (i.e., agents of a process algebra), our no-
tion of maximality relates a program written using guarded-
commands with a specification written in a UNITY-like tem-
poral logic. Although we have concerned ourselves here only
with showing maximality, our proof method may be used
with any given set of executions, to show that a given pro-
gram admits all those executions.

7. ACKNOWLEDGMENTS
This paper has been enriched by comments and suggestions
from the PSP research Group at the University of Texas at
Austin, and the Distributed Systems Reading Group at the
Technische Universität München, Germany.

8. REFERENCES
[1] K. M. Chandy and J. Misra. The drinking philosophers

problem. ACM Transactions on Programming

Languages and Systems, 6(4):632–646, 1984.

[2] K. M. Chandy and J. Misra. Parallel Program Design:

A Foundation. Addison Wesley, 1988.

[3] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

[4] R. Joshi and J. Misra. Maximally concurrent programs.
Formal Aspects of Computing, (to appear).

[5] L. Lamport. What good is temporal logic? In R. E. A.
Mason, editor, Information Processing 83: Proceedings

of the IFIP 9th World Congress, pages 657–668, Paris,
Sep 1983. IFIP, North-Holland.

[6] R. Milner. Communication and Concurrency.
International Series in Computer Science, C. A. R.
Hoare, Series Editor. Prentice-Hall International,
London, 1989.

[7] J. Misra. A logic for concurrent programming:
Progress. Journal of Computer and Software

Engineering, 3(2):273–300, 1995.

[8] J. Misra. A logic for concurrent programming: Safety.
Journal of Computer and Software Engineering,
3(2):239–272, 1995.

[9] J. Misra. A discipline of multiprogramming, work in
progress, ftp access at
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z,
1996.

APPENDIX
A. SUMMARY OF UNITY LOGIC
The UNITY logic, a fragment of linear temporal logic, has
proof rules for reasoning about properties of programs. A
short summary is given here; consult [7, 8] for details.

A.1 Safety
The fundamental safety operator of UNITY is constrains,
or co for short. The property p co q asserts that in any
execution a state satisfying p is always followed by a state
satisfying q. In order to model stuttering steps p is required
to imply q. The co operator and its derivative operators are
defined as follows, where s is quantified over the actions of
the program, and wp denotes weakest precondition [3]

p co q ≡ (∀ s :: p ⇒ wp.s.q)
stable p ≡ p co p
invariant p ≡ initially p and stable p

A predicate is stable if it remains true once it becomes true.
A predicate is invariant if it is stable and it holds in all
initial program states. Observe that p ∧ ¬q co p ∨ q is a
property of a program if from any state where p holds it
continues to hold until q holds; if q never holds then p holds
for ever.

A.1.0.1 The Substitution Axiom
The operation of a program is over the reachable part of its
state space. The UNITY proof rules, however, do not refer
to the set of reachable states explicitly. Instead, the follow-
ing substitution axiom is used to restrict attention to the
reachable states: if invariant p is a property of a program
then p may be replaced by true in any context.

A.2 Progress
The elementary progress operator, en, used in this paper
has the following informal meaning. If p holds at any stage
in the computation it will continue to hold as long as q
does not hold, and q holds eventually. Further, there is one
(atomic) action which guarantees to establish q starting in
any p-state. Formally,

p en q
∆
= (p ∧ ¬q co p ∨ q) ∧ (∃ s :: (p ∧ ¬q) ⇒ wp.s.q)

where s is quantified over all the actions of the program.

Given p en q, from the second conjunct in its definition,
there is an action of the program that establishes q starting
in any state in which p ∧ ¬q holds; from the first conjunct,
once p holds it continues to hold at least until q is estab-
lished. Therefore, starting in a state in which p holds q will
eventually be established.

Most of the progress properties of UNITY are expressed
using the 7→ (leads-to) operator, a binary relation on state
predicates. It is the transitive, disjunctive closure of the
ensures relation, i.e., the strongest relation satisfying the
following three conditions:

(basis)
p en q

p 7→ q

(transitivity)
p 7→ q, q 7→ r

p 7→ r

(disjunction) In the following, S is any set of predicates.
(∀ p : p ∈ S : p 7→ q)

(∃ p : p ∈ S : p) 7→ q

Derived Rules for leads-to There are several derived
rules for reasoning about the progress properties. Here, we
mention only the ones used in this paper.

• implication

p ⇒ q

p 7→ q

• lhs-strengthening, rhs-weakening

p 7→ q

p′ ∧ p 7→ q ,
p 7→ q ∨ q′

• cancellation

p 7→ q ∨ r , r 7→ s

p 7→ q ∨ s

• PSP

p 7→ q , r co b

p ∧ r 7→ (q ∧ b) ∨ (¬r ∧ b)

• Induction: In the following M is a total function map-
ping program states to a well-founded set (W,≺).

〈∀ m : m ∈ W :: p ∧ M = m 7→ (p ∧ M ≺ m) ∨ q〉

p 7→ q

In this paper we have used induction over natural numbers
only.

B. PROOF OF PROGRESS, (S3), FOR THE
TASK SCHEDULER

In section 5.3, we argued that (S3) holds. A proof using
UNITY logic follows. It is required to prove that every node
becomes black eventually, i.e., for all x, true 7→ x ∈ b. Define

the relative height x.rh of node x to be the sum of the height
differences of x and all its neighbors of lower heights, i.e.,

x.rh = (+y : x neighbor y ∧ H [x] > H [y] : H [h] − H [y])

The following properties can be proven directly from the
program text; each 7→ property is indeed an ensures prop-
erty. For all x, y, n,

1. x.low 7→ x ∈ b.
2. x.rh = n ∧ (x neighbor y) ∧ y.low

7→ (x.rh = n) ∧ (x neighbor y) ∧ y ∈ b.
3. x.rh = n ∧ (x neighbor y) ∧ y ∈ b 7→ x.rh < n.

We give an informal argument for the validity of these three
properties. A node’s height does not change as long as it re-
mains white. Therefore, if x is low and white then it remains
low (because its neighbors’ heights can only increase) and
white, until blackened. Eventually, x is considered for black-
ening and then blackened, establishing property (1). Proof
of (2) is similar: the node y of the lowest height among the
neighbors of x will eventually be black and until then x.rh
is unchanged. Property (3) says that that node y, as de-
scribed above, will eventually become white and then x.rh
is decreased because the height of y is increased. The proof
of true 7→ x ∈ b follows.

x.rh = n ∧ (x neighbor y) ∧ y.low
7→ (x.rh = n) ∧ (x neighbor y) ∧ y ∈ b

, From (2)
x.rh = n ∧ (x neighbor y) ∧ y.low 7→ x.rh < n

, transitivity with (3)
x.rh = n ∧ (∃ y :: (x neighbor y) ∧ y.low) 7→ x.rh < n

, disjunction over all y
x.rh = n ∧ ¬x.low 7→ x.rh < n

, using Invariant P0 and
the definition of low

x.rh = n ∧ x.low 7→ x ∈ b , strengthening LHS of (1)
x.rh = n 7→ x.rh < n ∨ x ∈ b

, disjunction on above two
true 7→ x ∈ b , induction on the above

