
On The Impossibility Of Robust Solutions ForFair Resource AllocationRajeev Joshi , Jayadev MisraDepartment of Computer Sciences, The University of Texas at AustinAbstractWe show that the presence of even a single faulty process makes itimpossible to design a strategy for fair allocation of a shared resource.Key words: Concurrency; Distributed Computing; Fault tolerance0 IntroductionA classic problem in distributed systems is the following resource allocationproblem: given a set of processes sharing a resource, design a synchronisationmechanism that guarantees (i) mutual exclusion, i.e., at any moment, at mostone process uses the resource, and (ii) deadlock-freedom, i.e., if some processis waiting for the resource, then eventually some process uses the resource. Asimple centralised solution to this problem is the following: a boolean variableb is used to denote whether the resource is available; b is initially set to true.An attempt by a process to acquire the resource is successful only if b is true;as a result, b is set to false. The attempt is unsuccessful if b is false. When aprocess releases the resource after use, b is set to true.A variant of this problem is the fair resource allocation problem, in which re-quirement (ii) above is replaced by the stronger condition of starvation-freedom,i.e., given that no process uses the resource forever, no process is denied forever.Although the above implementation is not starvation-free, it can be modi�edto meet this requirement by introducing a new variable q , of type Sequence ofProcess Identi�er ; q is initially set to the empty sequence. An attempt by aprocess to acquire the resource is successful only if b is true and the identi�erfor the process is at the head of q ; as a result, the identi�er is removed from q ,and b is set to false. The attempt is unsuccessful otherwise, and the processidenti�er is appended to q if it is not already in q . As before, when a processreleases the resource after use, b is set to true.A drawback of this implementation is that it works correctly only when all0



processes are persistent , i.e., each process waiting to use the resource makesrepeated attempts to acquire it until successful. In the presence of even a singletransient process, i.e., a process not guaranteed to follow each unsuccessfulattempt with another request, the above design provides not even the guaranteeof deadlock-freedom, because the presence of an identi�er for a transient processat the head of q can block the progress of other processes.In this paper, we show that this di�culty is not just an artefact of thesimplicity of this particular implementation { that, in fact, there is no solutionto the problem of fair resource allocation in an asynchronous system in whichsome processes might be transient.Our notion of transient processes corresponds to a class of process failuresin asynchronous systems for which no �nite experiment can distinguish betweenfailure and slow execution. Note, however, that transient processes may failonly when they are not using the resource; in particular, we do not considersituations in which processes may fail while using the resource, nor situationsin which the resource manager may fail: for systems with such catastrophicfailures, it is easy to show that there is no implementation that provides anyprogress guarantees. We have made stronger assumptions about the behaviourof processes in order to obtain a nontrivial impossibility result.Moreover, we have considered only those situations in which unsuccessfulprocesses make repeated attempts to acquire the resource. In some implemen-tations, an unsuccessful attempt causes a process to block, and wait for a signalfrom the resource manager. For such systems, the analogue of a transient pro-cess is one that may fail while it is blocked. Assuming, as before, that suchfailures are indistinguishable from slow response by �nite experiments, our re-sult applies in these situations too.1 PreliminariesConsider a system of N processes, numbered 0 through N � 1 (with N > 1),that share a resource. We represent a history of operations on the resource bya string of symbols that are of the form Sj , Uj or Rj , for 0 � j < N . Eachsymbol denotes an operation on the resource: Sj denotes a successful attemptby process j to acquire the resource, Uj denotes an unsuccessful attempt ifprocess j is not holding the resource, and a no-op otherwise, and Rj denotesa release if process j is holding the resource, and a no-op otherwise. (We usethis convention of no-ops because it places fewer constraints on occurrences ofsymbols of the form Uj and Rj ; this leads to a simpler presentation.)An implementation is given by a nonempty set of such strings, which corre-spond to the execution histories that the implementation admits. Not all suchnonempty sets are implementations, however { implementations are required tosatisfy certain additional properties, which are described in section 2.1



Notational Remark. Throughout this paper, the identi�ers e; f range over sym-bols, x; y range over �nite strings, r ranges over �nite and in�nite strings, andi; j range over processes, i.e., 0 � i < N and 0 � j < N .For any x; r , we write x v r (read \x under r") to mean that x is a �nitepre�x of r . The empty string is denoted by " ; it satis�es, for any string r ,(" v r) . For any e; x , the expression x / e (read \x snoc e") denotes the stringconsisting of x followed by e . The operator / is left associative, i.e., x / e / fmeans (x / e) / f .Operators have the following precedences:f:g ; f / ;: g ; f v ; 2 ; =2 ; = g ; f ^ ; _ g ; f ) ; � gwhere symbols within a set have the same binding power, and greater bindingpower than symbols in sets to the right. The in�x operator `.' denotes functionapplication.(End of Notational Remark.)2 ImplementationsDue to the fact that implementations provide certain guarantees, e.g., mutualexclusion, a set of strings constitutes an implementation only if it satis�es certainproperties. We express these properties in terms of two relations, de�ned, forall j; x as: (recall that x ranges over �nite strings only)(j loose in x) � (every Sj in x is followed eventually by an Rj)(Loose) (x free) � (8 j :: j loose in x)(Free)Informally speaking, (j loose in x) states that process j does not hold the re-source after execution x , whereas (x free) states that the resource is availableafter execution x .An implementation M is a nonempty set of strings, called the runs of M ,that satis�es the �ve conditions (C0 ){(C4 ) given below. (In (C0 ){(C2 ), vari-ables j; x and r are quanti�ed universally over the appropriate domains.)(x / Sj 2M) ) (x free)(C0 )Informally speaking, (C0 ) expresses mutual exclusion, i.e., a process is success-ful only if the resource is available. A consequence of this condition is thatstrings of the form x / Si / Sj are not runs of any implementation.x 2M ^ (j loose in x) ) (x / Sj 2M) _ (x / Uj 2M)(C1 ) x 2M ^ :(j loose in x) ) (x / Rj 2M)(C2 ) 2



These conditions state that processes behave asynchronously: (C1 ) states that,at any point, a process not holding the resource might attempt to acquire it, andthe implementation should be prepared to respond to the attempt by allowingit to be successful or unsuccessful. (C2 ) states that, at any point, a processholding the resource might release it. Note that these conditions are quitegeneral; for instance, they admit a nondeterministic implementation in which,for some i; j; x , the strings x / Si , x / Sj and x / Uj are all runs of theimplementation. (M is pre�x-closed)(C3 )Condition (C3 ) states that every pre�x of a run is also a run; from this, andthe fact that implementations are nonempty, it follows that " is a run of everyimplementation.(C4 ) Let r be any string such that(all �nite pre�xes of r are in M) ^(8 j; x :: x / Uj v r ) x / Sj =2M)Then, r 2M .Condition (C4 ) holds trivially for �nite r ; for in�nite r , it asserts the followingclosure condition on M : if all �nite pre�xes of r are in M , and if unsuccessfulattempts occur in r only at points at which successful attempts cannot occur,then r is in M .Remark on (C4 ). Condition (C4 ) needs some explanation. In particular, wenote that it is weaker than the requirement that M be continuous (which wouldstate that any run, all of whose �nite pre�xes are in M , also be in M) . Thereason we do not require continuity is that it disallows certain solutions withunbounded nondeterminism. For instance, consider a solution that initiallyselects an arbitrary natural number k , then rejects the �rst k attempts toacquire the resource, and then behaves like the starvation-free solution describedin the introduction. This solution is not continuous, because an in�nite stringconsisting only of unsuccessful attempts is not an execution history, althoughall its pre�xes are; however, the solution satis�es conditions (C0 ){(C4 ), so itis an implementation by the above de�nition.(End of Remark.)3 Fair ImplementationsFor any string r , we write (r is fair ) to mean that, for all j ,(r has in�nitely many Uj) ) (r has in�nitely many Sj)(Fair) 3



Note that, by this de�nition, all �nite strings are fair.An implementation M is said to be fair provided that all runs in M are fair.Informally speaking, fair implementations provide the guarantee of starvation-freedom to persistent processes. (Recall from the introduction that such imple-mentations solve the fair resource allocation problem.)4 Nonexistence of Fair ImplementationsWe show that every implementation has an unfair run. The proof consists ofshowing how to construct such a run for a given implementation, by exploitingthe fact that some process may be transient. As discussed in the introduction,this establishes the nonexistence of a robust implementation for the problem offair resource allocation.The main idea in the proof is to have two processes, A and B, collude inthe following way: process A makes repeated attempts to acquire the resourceuntil it is successful. If it acquires the resource, B makes an attempt, which isunsuccessful, because the implementation guarantees mutual exclusion. Next,A releases the resource, and the processes repeat this behaviour. There are twocases to consider: (i) A is always eventually successful, and (ii) after a certainpoint, A is always unsuccessful. In case (i), B starves for the resource; in case(ii), A starves { in both cases, the resulting run is unfair. (Note that, in case(ii), process B behaves in a transient manner, because it may not follow anunsuccessful attempt with another request.)This informal argument is formalised in the following theorem.Theorem. Every implementation has an unfair run.Proof. Given an implementation M , we design an algorithm to constructan in�nite sequence Y of �nite strings such that the limit of Y is an unfairrun of M . The algorithm consists of a nonterminating loop that maintains aninvariant L , de�ned as:L : (Y:h free) ^ (Y:h 2M) ^ (8 j; x :: x / Uj v Y:h ) x / Sj =2M)where h is a program variable. Informally speaking, this invariant states thatevery string in the sequence constructed by the algorithm represents an execu-tion history of M in which processes are unsuccessful only at points where theycannot be successful; we shall use this property in showing that the limit is anunfair run of M .The complete algorithm is shown below. Note that the disjunction of theguards is true; thus, the loop is nonterminating, and the algorithm eventuallyassigns, for each k, a value to Y:k .The two alternatives of the loop mirror the informal argument presentedabove. In the �rst alternative, the run being constructed is extended as follows:4



j[ var h : Natural; h ; Y:0 := 0 ; " fLg; doY:h / S1 2M �! fL ^ (Y:h / S1 2M)gh ; Y:(h+ 1) := h+ 1 ; (Y:h / S1 / U0 / R1) fLgY:h / S1 =2M �! fL ^ (Y:h / S1 =2M)gh ; Y:(h+ 1) := h+ 1 ; (Y:h / U1) fLgod]j�rst, process 1 acquires the resource, then process 0 makes an attempt, whichis unsuccessful (on account of (C0 )), and then, process 1 releases the resource.In the second alternative, the run is extended with an unsuccessful attempt byprocess 1 .L is initially established by setting h to 0 and Y:0 to " . (Recall from section 2that " is a run of every implementation.) To establish the invariance of L , weshow that each conjunct is preserved by the assignments in the alternatives.For the �rst conjunct, viz., (Y:h free) , this follows from (Loose), (Free)and the form of the two assignments. For the third conjunct, viz.,(8 j; x :: x / Uj v Y:h ) x / Sj =2M)we note that invariance in the �rst alternative follows from the fact that Y:h /S1 / S0 =2M (see comment after (C0 )), and, in the second alternative, followsdirectly from the guard.For the second conjunct, viz., (Y:h 2 M) , we observe, for the �rst alterna-tive: (Y:h / S1 2M) ^ (Y:h free)) f (Loose) and (Free) g(Y:h / S1 2M) ^ (0 loose in Y:h / S1)) f (C1 ), with j; x := 0; Y:h / S1 g(Y:h / S1 / S0 2M) _ (Y:h / S1 / U0 2M)� f �rst disjunct is false, from (C0 ) gY:h / S1 / U0 2M) f (Loose) and (C2 ) with j; x := 1; Y:h / S1 / U0 gY:h / S1 / U0 / R1 2MAnd for the second alternative: 5



(Y:h 2M) ^ (Y:h free)) f (1 loose in Y:h) , (C1 ) with j; x := 1; Y:h g(Y:h / U1 2M) _ (Y:h / S1 2M)) f (Y:h / S1 =2M) , from the guard for the alternative gY:h / U1 2MBy construction, for all k , Y:k v Y:(k + 1) , thus the limit of Y is de�ned.Let r denote this limit. From the fact that L is invariant, we conclude, applying(C4 ), that r is a run of M .We show that r is unfair as follows: if the �rst alternative is selected only�nitely often, r has an in�nite su�x in which U1 occurs in�nitely often, and S1does not occur; otherwise, the �rst alternative is selected in�nitely often, U0occurs in�nitely often in r , whereas S0 does not occur. In either case, r doesnot satisfy (Fair).(End of Proof of Theorem.)5 SummaryOur result is similar in spirit to a result by Fischer, Lynch and Paterson (see[0]), which showed the impossibility of distributed consensus in the presenceof even one failure. We have shown that even a single failed process makes itimpossible to implement fair resource allocation.Acknowledgements. We are grateful to the Seuss Group at the University ofTexas at Austin for their comments. In particular, we thank Will Adams forpointing out a problem with an earlier proof.References[0] Michael J.Fischer, Nancy A. Lynch, Michael S. Paterson, Impossibility ofDistributed Consensus With One Faulty Process . In: Journal of the ACM,Vol.32, No.2, pp.374-382, 1985.
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