
Modeling and Monitoring of
Hierarchical State Machines in Scala?

Klaus Havelund and Rajeev Joshi

Jet Propulsion Laboratory, California Inst. of Technology, USA
{klaus.havelund,rajeev.joshi}@jpl.nasa.gov

Abstract. Hierarchical State Machines (HSMs) are widely used in the
design and implementation of spacecraft flight software. However, the
traditional approach to using HSMs involves graphical languages (such
as UML statecharts) from which implementation code is generated (e.g.
in C or C++). This is driven by the fact that state transitions in an
HSM can result in execution of action code, with associated side-effects,
which is implemented by code in the target implementation language.
Due to this indirection, early analysis of designs becomes difficult. We
propose an internal Scala DSL for writing HSMs, which makes them
short, readable and easy to work with during the design phase. Writing
the HSM models in Scala also allows us to use an expressive monitoring
framework (also in Scala) for checking temporal properties over the HSM
behaviors. We show how our approach admits writing reactive monitors
that send messages to the HSM when certain sequences of events have
been observed, e.g., to inject faults under certain conditions, in order to
check that the system continues to operate correctly. This work is part
of a larger project exploring the use of a modern high-level programming
language (Scala) for modeling and verification.

1 Introduction

Hierarchical State Machines (HSMs) [13] are used extensively in the flight soft-
ware that runs on spacecraft developed by NASA’s Jet Propulsion Laboratory
(JPL). The current practice is (depending on programmer taste) either to work
textually and directly write low-level implementation code in C (which is hard
to write and read), or work graphically and automatically synthesize C code
from graphical HSM diagrams. In both cases it becomes difficult to prototype
and execute (test) design choices during early development because the use of
C forces introduction of low-level implementation details, hampering compre-
hension and analysis. Graphical formalisms are specifically not well suited for
mixing control states and non-trivial code to be executed as part of transition
actions for example. In this paper, we propose a method that allows HSMs to be

? The research performed was carried out at Jet Propulsion Laboratory, California In-
stitute of Technology, under a contract with the National Aeronautics and Space Ad-
ministration. Copyright 2017 California Institute of Technology. Government spon-
sorship acknowledged. All rights reserved.

implemented as an internal Domain-Specific Language (iDSL) in the high-level
Scala programming language. Using an internal DSL allows us to express the
HSM control state model and the code used in transitions all within the same
language, which makes it easier to explore different design choices. We use Scala
because it offers features that allow iDSLs to be implemented elegantly, includ-
ing implicit functions, partial functions, call-by-name arguments, and dot-free
method calls. We show how our iDSL for HSMs can be used with Daut (Data
automata) [14], a library for writing monitors, thus allowing us to check tem-
poral properties over the executions of an HSM. Daut offers a combination of
flat state machines and a form of temporal logic, and furthermore allows mon-
itoring of data parameterized events. An interesting feature of our approach is
the ability to write reactive monitors, which allow the injection of specific events
to the HSM when certain temporal properties are satisfied. This work is part
of a long-term project exploring the use of a modern high-level programming
language for writing models and properties, as well as programs.

The focus of this paper is the modeling and analysis of a single HSM, a
situation typically facing a programmer responsible for a single module in a
larger system. The modeling and analysis of multiple HSMs executing in parallel
and communicating asynchronously via message passing over prioritized queues
is described in [16]. Other topics not touched upon (and not used at JPL) are
orthogonal regions, history states, and do-activities. The contributions of the
paper are as follows. (1) We provide an elegant implementation of an internal
Scala DSL for HSMs. (2) We show how single HSMs can be tested with the
internal Daut monitoring DSL, which supports data parameterized monitors.
This illustrates two forms of state machine DSLs, useful for different purposes.
Each DSL is implemented in less than 200 lines of code. (3) We show how Daut
monitors can be used to write reactive monitors that allow test scenarios to be
described more conveniently. In [16], we extend the framework developed here
to model multi-threaded systems with multiple HSMs, define a DSL for writing
constraint-based test scenarios, and apply our approach to a real-life case study.

The paper is organized as follows. Section 2 describes related work. Section 3
introduces an example at an informal high level, and presents part of the imple-
mentation as an HSM in the Scala HSM iDSL. Section 4 outlines how the HSM is
tested through monitoring with the Daut iDSL. Section 5 outlines how the HSM
iDSL is implemented. Section 6 outlines how the Daut iDSL is implemented.
Finally, Section 7 concludes the paper.

2 Related Work

The state pattern [11] is commonly used for modeling state machines in object-
oriented programming languages. A state machine is implemented by defining
each individual state as a derived class of the state pattern interface, and im-
plementing state transitions as methods. The state pattern does not support
hierarchical state machines. A variant of the state pattern to cover HSMs for C
and C++ is described in [21]. This is a very comprehensive implementation com-

2

pared to our less than 200 lines of code. The Akka framework provides features
for concurrent programming and fault protection for the JVM, and in particular
it includes a library for writing non-hierarchical finite state machines (FSM) in
Scala [1]. The Daut iDSL for monitoring event sequences is related to numer-
ous runtime verification frameworks, including [4, 19, 6, 3, 15, 12, 7]. An approach
to use state charts for monitoring is described in [10]. The Umple framework
[2] advocates, as we do, an approach to unifying modeling and programming,
although it differs by having the modeling language being distinct from the pro-
gramming language. The system is interesting because it allows updates to the
model and the program in the same environment, while supporting visualization
of the textual models. In contrast our DSLs are internal, completely eliminating
the distinction between modeling language and programming language. Other
internal Scala monitoring DSLs have been developed [5, 15]. Daut itself is a sim-
plification of the earlier TraceContract monitoring framework in Scala [5].

A standard way of formally verifying state machines is to encode them in the
input language for, say, a model checker. However, this creates a gap between
the modeling language and the implementation language. Model checkers have
been developed for programming languages, for example Java PathFinder [17].
P# [8] is an extension of C# with concurrently executing non-hierarchical state
machines, communicating asynchronously using message passing. It is inspired
by the P external DSL [9] for modeling and programming in the same language,
translated to C. P# supports specification of environment and monitors as state
machines. However, such monitors do not support the temporal logic notation
or data parameterized event monitoring that Daut does.

3 Hierarchical State Machines in Scala

Example In this section, we illustrate our ideas with an example. The example
is based on a simple HSM for taking images with a camera. In our example, the
HSM can receive a TAKE IMAGE(d) request, where d denotes the exposure dura-
tion. It responds to this request by sending a command to power on the camera,
and waiting until the camera is ready. It then opens the shutter for the specified
exposure duration (using a timer service which generates a timeout event after
a specified period). Following this, it optionally takes a dark exposure1 with the
shutter closed (but only if the ambient temperature is above a specified thresh-
old). Finally, it saves the image data, and powers off the camera. Although this
is a toy example, it serves to illustrate the key ideas in our approach. In a re-
lated paper [16], we describe the application of our approach to a real-life case
study (a module that manages communication between the Curiosity rover and
Earth).

HSM as a Diagram Figure 1 shows a graphical view of the HSM that im-
plements our simple imaging example. Following standard HSM notation, the

1 A dark exposure allows determination of the noise from camera electronics, so that
this can be subtracted from the acquired image.

3

Fig. 1. HSM for Imaging Example

filled out black circles indicate the initial substate that is entered whenever a
parent state is entered. (Thus, for instance, a transition to the on state ends
with the HSM in the powering state.) Associated with each state are also two
optional code fragments, called the entry and exit actions. The entry action is
executed whenever the HSM transitions into a state, whereas the exit action is
executed whenever the HSM transitions out of a state. Finally, the labeled ar-
rows between states show the transitions that are caused in response to events
received by the HSM. A label has the form EVENT / code, which denotes that
the transition is triggered when the HSM receives the specified EVENT. In re-
sponse, the HSM transitions to the target state, and executes the specified code
fragment (which is optional). As an example, suppose the HSM is in state ex-
posing dark, and it receives the event SHUTDOWN (for which a transition is
defined in the parent on state). This would cause the HSM to perform the fol-
lowing actions (in order): (1) the exit action for the state exposing light, (2) the
exit action for the state on, (3) the actions associated with the event handler
evr(IMAGE ABORTED) ; Camera ! POWER OFF, and the (4) the entry action
for the state off.

For our imaging example, the HSM works as follows. As shown in the figure,
the HSM is associated with two variables: an integer-valued variable duration,
which denotes the duration of the exposure when an imaging request is made,
and the variable timer, of type Option[TimerTask]), which denotes whether there
is an outstanding timer for which the HSM is waiting. The system starts off in
the off state (marked initial). In the off state, the system responds only to a

4

trait Event
case class TAKE IMAGE(duration: Int) extends Event
case object SAVE DATA extends Event
...
class ImagingHsm extends SimpleMslHsm {
var duration: Int = 0
var timer: Option[TimerTask] = None

initial(off)

object off extends state() {
when {
case TAKE IMAGE(d: Int) ⇒ on exec {
duration = d ; Camera ! POWER ON
}

}
}

object on extends state() {
when {
case SHUTDOWN ⇒ off exec {
evr(IMAGE ABORTED)
Camera ! POWER OFF
}

}
}

object powering extends state(on, true) {
when { case READY ⇒ exposing }

}

object exposing extends state(on) {}

object exposing light extends state(exposing, true) {
entry { Camera ! OPEN

timer = Timer ! START(duration) }
exit { Timer ! STOP(timer) ; Camera ! CLOSE }
when {
case TIMEOUT ⇒ {
if (getTemp() >= DARK THRESHOLD)

exposing dark
else saving

}
}

}

object exposing dark extends state(exposing) {
entry { timer = Timer ! START(duration) }
exit { Timer ! STOP(timer) }
when {
case TIMEOUT ⇒ saving

}
}

object saving extends state(on) {
entry { Camera ! SAVE DATA }
when {
case READY ⇒ off exec {

evr(IMAGE SAVED) ; Camera ! POWER OFF
}

}
}

}

Fig. 2. The HSM for the imaging example in our internal DSL

TAKE IMAGE(d) event (where d is an integer). On receipt of this event, the sys-
tem saves the requested exposure duration d in the state variable duration, sends
a request to the camera to power on (indicated by the action Camera!POWER ON),
and then transitions to the on state, which is a superstate, so the HSM ends
up in the powering state. Here it waits until it gets a READY event from the
camera, upon which it enters the exposing superstate, which in turn causes
it to enter the initial exposing light substate. The entry action for this state
sends a request to the camera to OPEN the shutter, and then starts a timer
for the specified duration (which was saved on receipt of the command). When
the timer expires, the HSM receives a TIMEOUT event, which causes it to
either transition to the exposing dark state (if the ambient temperature is at
least the DARK THRESHOLD), or the saving state (if temperature is below the
DARK THRESHOLD). Whenever it is in a substate of the on state, the HSM can
respond to a SHUTDOWN request, which causes it to power off the camera and
transition back to the off state.

HSM in Scala Figure 2 shows the formalization, in our internal Scala DSL,
of the HSM in Figure 1. The model first defines the Event type, denoting the
set of events that trigger transitions in the HSM. The state machine itself is
defined as the class ImagingHsm extending SimpleMslHsm which in turn extends

5

the HSM trait defined by our iDSL, which is parameterized by the type of events
sent to the HSM. The local state variable duration records the duration when
an imaging request is received; this duration is used for both the light exposure
(with shutter open) and the (optional) dark exposure (with shutter closed). The
variable timer records the value of any timer for which the HSM is waiting (the
value is None if there is no timer currently in progress). In the off state, the event
handler for the TAKE IMAGE(d) event causes the HSM to execute the action code
which records the value d in variable duration and sends a POWER ON request
to the camera. The HSM then transitions to the on superstate, and in turn to its
initial substate, the powering state. (In our iDSL, initial substates are denoted
by the keyword true as the second argument to the extends state(..) declaration.)
In the powering state, receipt of the READY event causes a transition to the
exposing state, and in turn to the exposing light substate, where the entry actions
result in a request to OPEN the shutter and start a timer for the specified
duration. The rest of the example is similar. Since graphical formalisms are useful
for human comprehension, we have developed a tool based on Scalameta (see
http://scalameta.org) that generates a visual representation from the HSM
description in our Scala iDSL. This tool generated Figure 1 directly from the
code in Figure 2.

During execution, the HSM generates a log that contains event reports, gen-
erated for monitoring purposes. Our HSM framework contains special calls of
the form evr(E) which generates the event E, which can be used in monitors. For
instance, as shown in Figure 2, when a SHUTDOWN request is received in state
on, the HSM generates the IMAGE ABORTED log event. Similarly, the Timer
service generates events when a timer is started, is fired or is stopped. (These
timer events are used in the monitors described in the following section.) Fig-
ure 3 shows a sample log of the HSM corresponding to a test scenario is which
a TAKE IMAGE(7) is requested at time 101, and completes normally, followed
by a TAKE IMAGE(10) requested at time 200, which is terminated by sending a
SHUTDOWN request at time 205. This log can be checked by the Daut monitor-
ing engine to verify that the HSM execution obeys given temporal properties.

101:RECEIVED REQUEST(TAKE IMAGE(7))
104:POWERING ON
104:SHUTTER IS OPENED
104:TIMER STARTED
111:TIMER FIRED
111:TIMER CANCELED
111:SHUTTER IS CLOSED
111:TIMER STARTED
118:TIMER FIRED
118:TIMER CANCELED
120:SAVING STARTED
120:IMAGE SAVED
120:POWERING OFF

200:RECEIVED REQUEST(TAKE IMAGE(10))
203:POWERING ON
203:SHUTTER IS OPENED
203:TIMER STARTED
205:SHUTDOWN REQUESTED
205:TIMER CANCELED
205:SHUTTER IS CLOSED
205:IMAGE ABORTED
205:POWERING OFF

Fig. 3. Sample event log for imaging example

6

HSM Execution As mentioned in the introduction, the focus of this presen-
tation is the modeling and analysis of single HSMs. The modeling and analysis
of multiple HSMs executing in parallel is described in [16], where we model the
full complexity of the implementation, such as message priorities, queue enabling
and disabling, test scenario specifications, and analysis of timing properties. The
HSM is composed with an environment, which submits events to, and receives
requests from, the HSM as explained in the following. The environment con-
tains a mutable set of events, which are waiting to be submitted to the state
machine. This set can be augmented with new events from a test script and the
HSM. In each iteration, the environment picks a random event from the set and
submits it to the state machine. The state machine executes as far as it can,
possibly sending new requests back to the environment, simulating communica-
tion with other state machines. The environment in addition keeps a mapping
from requests it can receive to operations on the event set. For example, if the
environment receives a timer!START(d) request, it adds a TIMEOUT event to the
event set. This TIMEOUT event will then eventually be submitted back to the
state machine after d seconds have elapsed. The notation recv ! E in the HSM
denotes the sending of a request E to the receiver recv (via the environment).
In our example, the receiver Camera denotes the camera hardware, whereas the
receiver Timer denotes the timer service.

4 Monitoring with Daut

Daut (Data Automata) [14] is a simple internal Scala DSL for writing monitors
on event streams. Daut, like many runtime verification systems, offers two major
capabilities that HSMs do not: (i) the ability to track the state behavior for
multiple instances of some data (spawning automata), and (ii) a convenient
temporal logic formalism on top of a state machine formalism. In this section,
we show how to use the Daut monitoring library to specify and monitor that
certain temporal properties are satisfied by the executing HSM. We also show
how one can use the monitoring framework to build reactive monitors, which
allow us to inject events into the HSM when certain temporal patterns are met.

Figure 4 shows four temporal property monitors, representing requirements
that the imaging HSM must satisfy. Each property is modeled as a class extend-
ing the MSLMonitor class, which itself is defined as an extension of the Daut
Monitor class, which is parameterized with the type EventReport of event reports
being monitored. The Monitor class defines the features of Daut. The MSLMonitor
class defines additional functions that simplify writing monitors for our exam-
ple. The monitors receive event reports as they are generated by the HSM and
update their internal state accordingly, reporting any observed violations.

The first property, TimerUse, checks that once a timer is started, it should
either fire or be canceled before another timer is started. The body of the class
is an always-formula. The function always takes as argument a partial function
from events to monitor states. In this case, whenever a TIMER STARTED is
observed, the monitor moves to a watch state, in which it is waiting for either a

7

class MSLMonitor extends Monitor[EventReport] {
def inState(name: String) = during(EnterState(name))(ExitState(name))
...

}

class TimerUse extends MSLMonitor {
always {
case TIMER STARTED ⇒ watch {
case TIMER FIRED | TIMER CANCELED ⇒ ok
case TIMER STARTED ⇒ error(”Timer started before previous cancelation”)

}
}

}

class TimerState extends MSLMonitor {
val timerOn = during(TIMER STARTED)(TIMER FIRED, TIMER CANCELED)
val inExposing = inState(”exposing”)

invariant(”TimerState”) {
timerOn =⇒ inExposing

}
}

class ImageRequest extends MSLMonitor {
always {
case RECEIVED REQUEST(TAKE IMAGE(d)) ⇒ hot {
case IMAGE SAVED | IMAGE ABORTED ⇒ ok
case RECEIVED REQUEST(TAKE IMAGE()) ⇒ error(”Image was not saved or aborted”)

}
}

}

class ImgReactiveMonitor extends MSLMonitor {
always {
case POWERING ON ⇒ watch {
case SHUTTER IS OPENED ⇒ perhaps { Env.delayEvent(2, SHUTDOWN) }

}
}

}

Fig. 4. Monitors for the imaging example

TIMER FIRED or TIMER CANCELED event – another TIMER STARTED event
is an error if observed before then.

The second property, TimerState, checks that if a timer is currently running
(has been started but has not yet fired or been canceled), then the HSM must be
in the exposing state, meaning in any of its substates. The Boolean expression
occurring as argument to the invariant function gets evaluated in each new state
the HSM enters. The notation p ==> q denotes implication and is interpreted
as !p || q. The property uses the during construct to define the period during
which the timer is active, namely in between an observed TIMER STARTED, and
either a TIMER FIRED or TIMER CANCELED event report is observed. Also the
inState function defined in class MSLMonitor is defined using the during function,
here tracking the event reports indicating respectively entering and subsequently
exiting a state.

The third property, ImageRequest, is similar to the TimerUse property in
form, and checks that once an image request has been received, then eventually
the image must be saved or the imaging must be aborted. It is an error if another

8

image request is received before then. The hot operator causes Daut to check
that the image saving or image abortion is seen before the end of the execution
(Daut reports an error if there are any hot states active at the end of the trace).

We have just discussed how we can use Daut to specify and monitor tem-
poral properties. Since Daut is a Scala library, we can write Daut monitors to
also take actions during a run, such as causing new events to be sent to the
HSM, thus affecting the resulting behavior. We refer to such Daut monitors
as reactive monitors. The last monitor, ImgReactiveMonitor, in Figure 4 is an
example of a reactive monitor, in this case randomly sending a SHUTDOWN
event to the HSM whenever the monitor sees a POWERING ON event followed
by a SHUTTER IS OPENED event report. The perhaps function takes a code
fragment (call-by-name) and randomly decides whether or not to execute it.
In our example, this monitor results in a SHUTDOWN event being sent to the
HSM 2 seconds after the SHUTTER IS OPENED event is seen. In the example
execution trace shown in Figure 3, there are two occurrences where the moni-
tor sees a POWERING ON followed by an SHUTTER IS OPENED event report.
The perhaps function decided to execute the action after the second instance of
the SHUTTER IS OPENED event report (which occurs at time 203), issuing a
SHUTDOWN at time 205.

5 HSM Implementation

The concept of a hierarchical state machine is implemented as the Scala trait
HSM (a trait is similar to an interface in Java), which a user-defined HSM must
extend, and which is parameterized with the type Event of events that can be
submitted to it:

trait HSM[Event] {...}
The HSM trait defines the following types and values used throughout:

type Code = Unit ⇒ Unit
type Target = (state, Code)
type Transitions = PartialFunction[Event, Target]
val noTransitions: Transitions = {case if false ⇒ null}
val skip: Code = (x: Unit) ⇒ {}

Code represents code fragments (with no arguments and returning no result),
that are to be executed on event transitions, and in entry and exit blocks. A
Target represents the target state and the code to be executed when a transition
is taken. Transitions represents the transitions leading out of a state, encoded as
partial functions from events to targets. Applied to an event a transition function
will either be undefined on that event (corresponding to the transition not being
enabled), or it will return a target. The default transition function from a state
is represented by noTransitions which is undefined for any event. Finally, skip
represents the code with no effect.

We can now present the state class encoding the states in a state machine.
The contents of this class can be divided into the DSL “syntax”, permitting a

9

user to create a state, and the DSL implementation. The DSL syntax, including
its update on internal variables, can be presented as follows:

case class state(parent: state = null, init: Boolean = false) {
var entryCode: Code = skip
var exitCode: Code = skip
var transitions: Transitions = noTransitions
...
def entry(code: ⇒ Unit): Unit = {entryCode = (x: Unit) ⇒ code}
def exit(code: ⇒ Unit): Unit = {exitCode = (x: Unit) ⇒ code}
def when(ts: Transitions): Unit = {transitions = ts}

implicit def state2Target(s: state): Target = (s, skip)
implicit def state2Exec(s: state) = new {
def exec(code: ⇒ Unit) = (s, (x: Unit) ⇒ code) }

}

The class is parameterized with the parent state (if it is a sub-state), and whether
it is an initial state of the parent state (false by default). The class declares three
variables, holding respectively the entry code (to be executed when entering the
state), the exit code (to be executed when leaving the state), and the transition
function, all initialized to default values. Three methods for updating these are
furthermore defined. The code parameters to the first two functions entry and exit
are declared as “call by name”, meaning that at call time a code argument will
not be evaluated, and will instead just be stored as functions in the appropriate
variables. Since a method application f(e) in Scala can be written using curly
brackets: f{e}, we achieve the convenient code-block syntax for writing calls of
these methods, making these methods appear as added syntax to Scala.

Finally two implicit functions are defined. An implicit function f will be
applied to any expression e by the compiler if e occurs in a context C[e] which
does not type check, but C[f(e)] does type check. Implicit functions are useful
for defining elegant DSLs. In this case, the implicit function state2Target lifts
a state to a target, allowing us to just write states as targets on transitions
(and no code), and the function state2Exec lifts a state to an anonymous object,
defining an exec method, allowing transition right-hand sides like: top exec {
table.insert(w) }. The above definitions show the HSM syntax and how it is
used to define states and transitions. In addition, the function initial is used for
identifying the initial state in the HSM:

def initial(s: state): Unit = {current = s.getInnerMostState}

The function getInnerMostState is defined in the class state as follows, along with
a method for finding the super states of a state (needed for executing HSMs):

var initialState: state = null
if (parent != null && init) {parent.initialState = this}

10

def getInnerMostState: state =
if (initialState == null) this else initialState.getInnerMostState

def getSuperStates: List[state] =
(if (parent == null) Nil else parent.getSuperStates) ++ List(this)

When a state is created, if it is an initial state, the initialState variable of the
parent is initialized with the just created state (this). When a state is the target
of execution, the innermost initial state of that state is the one becoming active.

An HSM is at any point in time in a current state, and will potentially change
state when an event is submitted to it from the environment. Current state and
the event submission method are defined as follows.

var current: state = null

def submit(event: Event): Unit = {
findTriggerHappyState(current, event) match {
case None ⇒
case Some(triggerState) ⇒
val (transitionState,transitionCode) = triggerState.transitions(event)
val targetState = transitionState.getInnerMostState
val (exitStates, enterStates) = getExitEnter(current, targetState)
for (s <− exitStates) s.exitCode()
transitionCode()
for (s <− enterStates) s.entryCode()
current = targetState

}}

When executed from the current state, and given the submitted event, the func-
tion call findTriggerHappyState(current, event) finds the innermost state contain-
ing (or being equal to) current, which is ready to transition on the event. The
result is Option[state], where None represents that no such state exists. In case
such a state exists, its transition function is applied to the event, obtaining a
target (target state, and code to execute), then the innermost initial state of the
target state is computed, and based on current and target state, we compute the
list of states to exit and the list of states to enter via the call getExitEnter(current,
targetState), whose implementation is straightforward and not shown. It com-
putes the super states (listed top down) for respectively the from-state and the
to-state, and then strips off the common prefix of the two lists. The remaining
lists are the lists of states to exit and enter respectively. Now we can execute
exit codes, the transition code itself, and entry codes. Note that requests sent
by the state machine in these code fragments will go back to the environment,
which then in later iterations will submit corresponding events back to the state
machine, as explained earlier. For performance reasons, we want to avoid re-
peated computation of innermost state for a state, and the list of exit and entry
states. Thus our implementation caches these so they are only computed once
(this is done with an additional 20 lines of code, not shown here due to space

11

limitations). We can now define the function for finding the innermost enclosing
state of the current state, containing a transition function enabled for an event:

def findTriggerHappyState(s: state, event: Event): Option[state] =
if (s.transitions.isDefinedAt(event)) Some(s) else
if (s.parent == null) None else findTriggerHappyState(s.parent, event)

The function calls itself recursively up the parent chain until it finds a state
whose transition function is defined on the event. For verification purposes, a
function is defined for determining which state (by name, including super states)
an HSM is in, matching against a regular expression:

def inState(regexp: String): Boolean = {
current.getSuperStates.exists(.name.matches(regexp))
}

The presented code is the implementation in its entirety, except for the following
concepts (30 lines of code): (i) computing exit/enter state chains; (ii) caching of
computations of innermost states and exit/enter state chains; (iii) the ability for
the user to announce call-back functions to be called whenever a state is entered,
exited, or the monitor reaches a quiescent state.

6 Daut Implementation

The general idea behind the implementation of Daut is described in [14] (al-
though the version used in this work differs in minor ways), summarized here
with the addition of temporal invariants (during and invariant). The class Mon-
itor contains a variable holding at any point during monitoring the set (logic
conjunction) of active monitor states2:

class Monitor[E <: AnyRef] {
type Transitions = PartialFunction[E, Set[state]]
var states: Set[state] = Set()
...
}

A state is an instance of the following class, which contains a variable holding
the transitions out of the state, as well as a variable indicating whether it is an
acceptance state (acc = true) or not (by default a state is an acceptance state).

trait state {
var transitions: Transitions = noTransitions
var acc: Boolean = true
if (first) {states += this;first = false}

2 Note that there is some terminology overlap between the HSM DSL and the Daut
DSL, e.g. the concepts of states and transitions, with similar meanings although not
necessarily in the details. This works out due to a clear separation of name spaces
in that HSMs and Daut monitors extend different classes (HSM and Monitor).

12

def apply(event:E): Option[Set[state]] =
if (transitions.isDefinedAt(event)) Some(transitions(event)) else None

def watch(ts:Transitions) {transitions = ts}
def always(ts:Transitions) {transitions = ts andThen (+ this)}
def hot(ts:Transitions) {transitions = ts; acc = false}
def next(ts:Transitions) {transitions = ts orElse {case ⇒ error}; acc=false}
}

The first state created in a monitor becomes the initial state, e.g. the always-state
in our monitors. A state is applied (the apply method) to an event to return an
optional set of results, and None if the state does not contain transitions defined
for the event. In addition a collection of temporal methods are defined: watch,
always, hot, and next. Other methods are defined in the actual system, including
weaknext, until, and weakuntil, known from temporal logic. These methods take
as argument a transition function and store it or a modification of it in the
transitions variable of the state, and also set the acc variable for non-acceptance
states. The Monitor class in addition defines a method for each of the temporal
methods defined inside the state class for creating states of the corresponding
temporality. We show one of these, the rest follow the same pattern:

def always(ts: Transitions) = new state { always(ts) }

The during3 class is defined as a particular form of state. It contains a Boolean
variable on, true when one of the e1 events has been observed but an e2 event
has not yet been observed.

case class during(e1: E∗)(e2: E∗) extends state {
states += this
val begin = e1.toSet
val end = e2.toSet
var on: Boolean = false

def startsTrue: during = {on = true; this} // allows interval initially true

always {
case e ⇒ if (begin.contains(e)) {on = true} else

if (end.contains(e)) {on = false}
}
}

We have seen how an object of class during can be used as a Boolean (e.g. timerOn
in Figure 4). This is made possible with the following implicit function:

implicit def liftInterval(iv: during): Boolean = iv.on

3 The during(P)(Q) operator is inspired by the [P,Q) operator in MaC [18].

13

We finally illustrate how invariants are realized. A variable contains all declared
invariants (as pairs of an error message, and the predicate itself). An invariant is
declared with invariant(txt)(p) (where p is a call-by-name argument not evaluated
before invariant is called), checked initially and after each event processing.

var invariants: List[(String, Unit ⇒ Boolean)] = Nil

def invariant(e: String)(inv: ⇒ Boolean): Unit = {
invariants ::= (e, ((x: Unit) ⇒ inv))
check(inv, e)
}

def check(b: Boolean, e: String) : Unit = {if (!b) printErrorMessage(e)}

We finally show how event reports are issued with the verify method, and how
monitoring is ended (given a finite trace) with the end method. Note how invari-
ants are evaluated after each processed event.

def verify(event: E) {
for (sourceState <− states) {

sourceState(event) match {
case None ⇒
case Some(targetStates) ⇒

statesToRemove += sourceState
for (targetState <− targetStates) {

targetState match {
case ‘error‘ ⇒ printErrorMessage()
case ‘ok‘ ⇒
case ⇒ statesToAdd += targetState
}}}}

states −−= statesToRemove; states ++= statesToAdd
statesToRemove = Set(); statesToAdd = Set()
invariants foreach { case (e, inv) ⇒ check(inv(), e) }
}

def end() {
val hotStates = states filter (! .acc)
if (!hotStates.isEmpty) {printErrorMessage();...}
}

7 Conclusion and Future Work

We have shown how HSMs can be elegantly modeled in an internal DSL in
the Scala programming language. The iDSL has been illustrated with a simple
example of an HSM used for taking images with a camera. We have additionally
illustrated how an existing internal Scala DSL for monitoring was extended and

14

applied to testing the HSM. In particular, our approach allows the definition
of reactive monitors, which can send events to the HSM when certain temporal
properties are satisfied, which makes it easier to write complex test cases. The
code for each of these iDSLs is less than 200 lines, which makes it easier to
validate their semantics. A more comprehensive validation would be to model an
existing HSM (written in C) in our iDSL (as done in [16]), and compare execution
logs on the same inputs. We have also developed a capability for generating
graphical representations (used to generate Figure 1) directly from the HSM
description in our iDSL. The work illustrates how a high-level programming
language can be used for modeling as well as programming, as part of a model-
based engineering approach. We plan to support refinement of high-level models
into low-level programs which can directly be translated into C code. We are
working on extending our approach to support automated test-case generation
(using an SMT solver) and formal verification of Scala programs using the Viper
framework [20].

References

1. Akka FSMs. http://doc.akka.io/docs/akka/current/scala/fsm.html.
2. Umple - Model-Oriented Programming. http://cruise.site.uottawa.ca/umple. Ac-

cessed: 2017-05-26.
3. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified

event automata: Towards expressive and efficient runtime monitors. In FM, pages
68–84, 2012.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, pages 44–57, 2004.

5. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis. In
Proc. of the 17th International Symposium on Formal Methods (FM’11), volume
6664 of LNCS, pages 57–72, 2011.

6. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time moni-
toring: from EAGLE to RuleR. J Logic Computation, 20(3):675–706, June 2010.

7. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of temporal
first-order properties with aggregations. Formal Methods in System Design, 2015.

8. P. Deligiannis, A. F. Donaldson, J. Ketema, A. Lal, and P. Thomson. Asyn-
chronous programming, analysis and testing with state machines. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, pages 154–164, New York, NY, USA, 2015. ACM.

9. A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey. P:
Safe asynchronous event-driven programming. In Proceedings of PLDI ’13, pages
321–332, 2013.

10. D. Drusinsky. Modeling and Verification using UML Statecharts. Elsevier, 2006.
ISBN-13: 978-0-7506-7949-7, 400 pages.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston, MA, USA, 1995.

12. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Trans. Services Computing, 5(2):192–206, 2012.

13. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, June 1987.

15

14. K. Havelund. Data automata in Scala. In Proc. of the 8th International Symposium
on Theoretical Aspects of Software Engineering (TASE’14), 2014.

15. K. Havelund. Rule-based runtime verification revisited. International Journal on
Software Tools for Technology Transfer, 17(2):143–170, 2015.

16. K. Havelund and R. Joshi. Modeling rover communication using hierarchical state
machines with Scala. May 2017. Accepted for publication at TIPS 2017.

17. K. Havelund and W. Visser. Program model checking as a new trend. STTT,
4(1):8–20, 2002.

18. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A run-
time assurance approach for Java programs. Formal Methods in System Design,
24(2):129–155, 2004.

19. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP
runtime verification framework. STTT, pages 1–41, 2011.

20. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 9583
of LNCS, pages 41–62. Springer-Verlag, 2016.

21. M. Samek. Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes, MA, USA, 2 edition, 2009.

16

