
Modeling Rover Communication using
Hierarchical State Machines with Scala

Klaus Havelund and Rajeev Joshi

Jet Propulsion Laboratory, California Inst. of Technology, USA
{klaus.havelund,rajeev.joshi}@jpl.nasa.gov

We demonstrate the application of a new domain-specific language (DSL) for
modeling Hierarchical State Machines (HSMs) to the software that manages
communications for the Curiosity Mars rover. The spacecraft software is multi-
threaded, where some threads implement an HSM that interacts with hardware
devices, operating system services, and with other threads via asynchronous and
prioritized message passing. Our DSL is implemented as a shallow embedding
within the programming language Scala, which makes our models of HSMs tex-
tual, short, readable, and perhaps most importantly: easy to write, modify and
test at design time. We also present a notation for writing high-level test scenar-
ios that drive the system, and show how we use class inheritance to compactly
express derived tests that are variations of a baseline test scenario. We fur-
thermore apply a monitoring Scala DSL for checking temporal logic properties
over the running log of events being generated by the HSMs. We show how our
framework can be used to define reactive monitors that can be used to modify
baseline test scenarios by injecting events when certain temporal constraints are
met. We describe how we have used reactive monitors to identify certain timing
assumptions made in the design. The work described here is part of a broader
effort that is exploring the use of a modern high-level programming language
for systems modeling, as an alternative to using a formal specification/modeling
language.

1 Introduction

Embedded systems such as spacecraft flight software are typically written in low-
level implementation languages like C and C++, which provide the level of control
and low overhead that is needed for such systems. However, modern spacecraft
software is quite complex, and there has been an increasing trend towards de-
veloping intermediate, higher-level formalisms that make it easier for developers
to design and write flight software. One formalism that is used at NASA’s Jet
Propulsion Laboratory (JPL) is Hierarchical State Machines (HSMs) [19]. Con-
ventional finite state machines have a finite number of control states and tran-
sitions are labeled with atomic letters over a finite alphabet. HSMs allow the
declaration of mutable state variables, which can be used in transition guards,
and updated in transition actions. HSMs used in flight software are often diffi-
cult to write and understand due to the mixture of control states (the states in
the state machine), code to be executed when taking transitions, and the pres-

ence of timers, device interactions, thread priorities, and asynchronous message
communication.

The current approach used at JPL is to design the control structure of these
HSMs using a graphical tool or a limited domain-specific language (DSL), and
to separately write the code that is executed on transitions directly in the imple-
mentation language (C/C++). While this approach helps somewhat by saving
the developers from having to manually write code for managing the control
states of the HSM, the translation from an intermediate DSL directly to low-
level implementation code makes it onerous to experiment with design choices
during early development. In this paper, we present the application of an inter-
nal Scala DSL (called iHSM) for writing HSMs, initially presented in [14], to the
modeling of the software that manages communications for the Curiosity Mars
rover. We extend the approach presented there (which models a single HSM)
to modeling complex software systems in which multiple HSMs are executing
concurrently and interacting with each other using asynchronous messaging. We
illustrate how iHSM simplifies prototyping and modeling by integrating the no-
tation for describing the HSM control structure within the same language (Scala)
that is used to write the actions executed on transitions. We also introduce a no-
tation for describing high-level test scenarios, that can be used to compactly and
quickly specify test cases on which the HSMs can be exercised. We furthermore
describe the application of the Daut monitoring framework [12] (also a Scala
DSL), which can be used to express properties in temporal logic, allowing devel-
opers to quickly write and check temporal properties over HSM runs driven by
scenario test cases, as well as writing reactive monitors that inject events into a
running system when some specified temporal conditions are met. We show how
iHSM fills a much-needed modeling formalism that allows developers to quickly
prototype and test HSM designs.

The contributions of the paper are as follows. (1) We extend the iHSM no-
tation developed in our previous work [14] to model multi-threaded systems,
in which multiple HSMs are running in separate threads and interacting with
each other via asynchronous messaging. (2) We apply our approach to a real-life
case study1: the Coordinated Communications Behavior Module (CBM) used
in the Curiosity rover for managing communications with Earth. (3) We de-
velop a simple framework for expressing test constraints and a test engine that
can automatically run tests satisfying these constraints. (4) We apply the Daut
monitoring framework we have developed that allows writing properties in tem-
poral logic and checking these properties during test runs. Our approach is part
of a broader effort exploring the use of a modern high-level programming lan-
guage for systems modeling, as an alternative to using a formal specification
language such as VDM or a semi-formal modeling language such as SysML, as
discussed in [6, 11]. We have chosen Scala for our work as it is a statically typed
object-oriented functional programming language which provides many conve-

1 Due to JPL restrictions on sharing of flight artifacts, neither the full case study in
C, nor its complete formalization in Scala, can be made publicly available.

2

nient features (such as implicit functions, partial functions, call-by-name) that
make it easy to develop internal DSLs.

The paper is organized as follows. Section 2 describes related work. Section 3
provides a high-level overview of the architecture of the flight software running
on the Curiosity rover, and of the CBM module that is the target of our case
study. Section 4 describes how the HSM for the CBM module is modeled in
the iHSM notation, how test scenarios are expressed in iHSM, how monitors
are expressed in Daut, and how they can be used to check timing assumptions.
Finally, Section 5 concludes the paper.

2 Related Work

The state pattern [10] is commonly used for modeling state machines in object-
oriented programming languages. A state machine is implemented by defining
each state as a derived class of the state pattern interface, and by implementing
state transitions as methods. The original state pattern does not, however, sup-
port hierarchical state machines. A variant of the state pattern to cover HSMs
for C and C++ is described in [19]. This is a very comprehensive implementa-
tion compared to our less than 200 lines of code. However, using C and C++ is
cumbersome for early modeling and analysis of a design. The Akka framework
provides features for concurrent programming and fault protection for the JVM,
and in particular it includes a library for writing non-hierarchical finite state
machines (FSM) in Scala [1]. The Daut DSL for monitoring event sequences
is related to numerous runtime verification frameworks, including [17, 3, 13, 5].
An approach to use state charts for monitoring is described in [9]. Other in-
ternal Scala monitoring DSLs have been developed [4, 13, 16]. Daut itself is a
simplification of the earlier TraceContract monitoring framework in Scala [4].

A standard way of formally verifying state machines is to encode them in the
input language for, say, a model checker. However, this creates a gap between
the modeling language and the implementation language. Model checkers have
been developed for programming languages, for example Java PathFinder (JPF)
[15] (JPF was originally developed to also support Java as a modeling language).
P# [7] is an extension of C# with concurrently executing non-hierarchical state
machines, communicating asynchronously using message passing. It is inspired
by the P external DSL [8] for modeling and programming in the same language,
translated to C. P# supports specification of an environment also as a state
machine. Monitors are written as state machines as well, distinguishing between
cold and hot (eventually) states, as in Daut. However, these monitors do not
support the temporal logic like notation or data parameterized monitors that
are expressible in Daut. P# programs can be analyzed statically for data races,
and explored dynamically using randomized testing, exploiting the static analysis
results.

Our HSMs differ from UML statecharts (SCs) [2] in a number of ways. First,
in UML SCs any state can consist of orthogonal regions executing in parallel. In
our approach orthogonal regions are only allowed at the outermost level, where

3

multiple HSMs run concurrently. Thus, concepts such as fork and join found
in UML SCs are not available in HSMs. Second, while communication between
UML SCs is synchronous (hand-shake communication), the communication be-
tween HSMs is asynchronous: a message sent from a machine A to a machine
B ends up in B’s input queue and is only consumed by B when its associated
thread runs. Third, UML SCs support a built-in limited notion of timers, whereas
HSMs support explicit programming of timers, which is needed to model JPL
flight software faithfully. HSMs do not currently support history states, but we
plan to add this in the future.

3 Overview of the Curiosity Flight Software Architecture

In this section, we give a brief overview of the flight software (FSW) architecture
for the Curiosity rover. The main computer on Curiosity is a radiation-hardened
PowerPC processor (the BAE RAD750) running the WindRiver VxWorks Op-
erating System, with a priority-preemptive scheduler2. The Curiosity FSW con-
sists of around 150 threads that communicate with each other via asynchronous
messaging. In the following subsections, we describe the Curiosity software ar-
chitecture in more detail.

3.1 Threads and Message Handling

Each thread has an associated incoming queue for storing messages sent to that
thread. A thread T1 may send a message M to any thread T2 in the system
(including itself). The message M is appended to the incoming queue for T2. A
key property of the Curiosity FSW is that sending a message is a nonblocking
operation3. However, receiving a message from a queue is a blocking operation,
which causes the thread to be suspended until a message becomes available.
Figure 1 shows an outline of the main loop that is run by each thread.

1 while (true) {
2 m = msg receive() // blocks until a message is available
3 message handler(m) // nonblocking code, may only send messages
4 }

Fig. 1. Outline of main thread loop

2 A priority-preemptive scheduler schedules for execution the highest priority task
that is ready to run.

3 If a message queue is full, an attempt to send a message to that queue results in
either the message being dropped (for noncritical messages), or causes a system
exception (for critical messages).

4

As shown in the figure, each thread executes an infinite loop that waits
for a message to become available in its incoming queue; when a message m
becomes available, the thread is unblocked and then executes the message handler
function, which processes m. As noted above, as per the architectural rules, the
message handler function is required to be nonblocking, so it may only send
messages; it is not allowed to receive any messages.

One quirk of the Curiosity FSW design is that messages delivered to a thread
are not consumed in a strict FIFO order. Instead, a thread’s incoming queue con-
sists of an ordered sequence Q1, Q2, ..Qn of subqueues. The ordering of subqueues
denotes message priority, so messages in subqueue Qk have higher priority than
messages in subqueue Qk+1. When a message is delivered to a thread, it is ap-
pended to one of the subqueues (depending on the priority associated with the
message). Additionally, each subqueue Qi is associated with a boolean flag Bi,
which indicates whether the subqueue is enabled for receiving. We say a mes-
sage M is pending for a thread if M is at the head of an enabled subqueue
Qi (that is, such that Bi is true). The msg receive operation then retrieves the
highest priority message that is pending for a thread. If there are no pending
messages (that is, all enabled subqueues are empty), then the msg receive blocks
the calling thread. This unusual design of prioritized subqueues was introduced
to support the following use case: a thread T1 receives a message M1 whose
processing requires it to send a request message to another thread T2 and wait
for a reply. As per the architectural pattern, T1 cannot make a blocking call to
T2, so it must go back to the head of its main thread loop (line 2 in Figure 1)
and wait for the reply from T2. However, while it is waiting for this reply, we
would like to avoid processing new requests sent to T1 (as this would make the
implementation of T1 more complicated). To achieve this, T1 uses two subqueues
(one for requests and one for replies), and it disables the request subqueue when
it sends a request to T2. Now, any new requests will be ignored until T1 receives
the reply from T2 (which is delivered to the reply subqueue), at which point T1
re-enables the request subqueue and processes the next waiting request.

3.2 Hierarchical State Machines (HSMs)

As mentioned earlier, spacecraft software (and embedded software in general)
is often designed and implemented using hierarchical state machines (HSMs).
HSMs can be characterized as state machines with an imposed hierarchy, allow-
ing states to contain (sub) state machines, to an arbitrary depth. In addition,
every state has optional associated entry and exit actions. When an HSM re-
ceives an event E in a state S, it finds the closest ancestor state A of S which
has a transition α defined for event E to a target state T . It then computes the
least common ancestor state P between A and T . It then executes the exit ac-
tions of all states (in order) along the path from S to P , then executes the action
associated with the transition α, and finally executes the entry actions (in order)
along the path from P to T . In the Curiosity FSW, each HSM is implemented
by a thread, which receives events as messages sent to the thread’s incoming

5

queue. (That is, each received message corresponds to a single event, and the
message handler corresponds to the action associated with the transition.)

Fig. 2. Full HSM for the Communication Behavior module

Figure 2 shows a graphical view of the complete HSM for the Communica-
tions Behaviors (CBM) module that we are modeling for our case study. This
informal diagram was created by the module developer during design and was
not intended to depict all the details; it is only included here to show the overall
complexity. For instance, none of the transitions are annotated with conditions
or action code. The black circles with an incoming edge and multiple outgo-
ing edges represent conditional transitions (where the branch conditions are not
shown). The CBM module coordinates the activities needed to prepare the space-
craft for communication sessions (called windows) with Earth. Each window has
an associated start and end time, and the set of future windows is stored in a
table. Windows are added and deleted by ground operators. CBM selects the
earliest window in the table and ensures that the telecommunications hardware
is configured in time for the window (for instance, by ensuring that the antenna
is pointed to and tracking Earth). While we have modeled the entire module
HSM as part of our case study, in the interest of readability, we only discuss a
small (slightly simplified) fragment of this HSM in this paper. This fragment is
shown in Figure 3. As shown in the figure, there is a state top that contains all
other states. Following usual HSM notation, the filled out black circles indicate
the initial substate that is entered whenever the parent state is entered. (Thus,

6

Fig. 3. Fragment of HSM for the CBM module

for instance, a transition to the in window state causes the HSM to transition to
the xband prep substate.) Associated with each state are also two optional code
fragments, the entry and exit actions. The entry action associated with a state
is executed whenever the HSM enters that state, whereas the exit action is exe-
cuted whenever the HSM leaves that state. Finally, the labeled arrows between
states show the transitions that are caused in response to messages received by
the HSM. A label has the form MESSAGE / code, which denotes that the tran-
sition is triggered when the HSM receives the specified MESSAGE. In response,
the HSM transitions to the target state, and executes the (optional) code frag-
ment. For instance, suppose the HSM is in state dur2, and it receives the STOP
message. This causes the HSM to perform the following actions (in order): (1)
the exit action for the state dur2, (2) the exit action for the state active, (3)
the action Timer ! CANCEL, which cancels an existing timer, and (4) the entry
action for the state cleanup.

3.3 Interactions between HSMs, Devices and Timers

The execution of an action may result in the HSM sending messages to other en-
tities in the system, such as other threads (also possibly implemented as HSMs),
to devices (for instance, powering on a radio), or to system services (for in-
stance, the timer service, discussed below). Message transmissions are denoted
as recv ! M where recv is the receiver to which the message M is sent. In our ex-
ample, the receivers Hga and Sdst denote devices (the high-gain antenna and an
X-Band radio, respectively), whereas the receiver Timer denotes the timer ser-
vice. The receiver Self denotes the HSM itself; for instance, in state xband prep,
the entry action results in the HSM sending the START TRACK message to

7

the Hga device, and the STEP message to itself; the latter in turn causes the
HSM to transition from the xband prep to the xband cfg state, while sending
the TURN ON message to the Sdst device. (Messages to Self allow a thread to
break up its processing into smaller units of computation, thereby allowing the
processing to be interrupted by other, higher-priority messages.)

As explained earlier, threads can enable/disable some of their subqueues,
to avoid receiving messages on those subqueues while in certain states. For the
example shown in Figure 3, we assume that there are three subqueues, labeled
”transition”, ”abort” and ”request” (in decreasing priority order). The STEP,
DONE and TIMEOUT messages are delivered to the ”transition” subqueue, STOP
messages are delivered to the ”abort” subqueue, and the ADD WIN message is
delivered to the ”request” subqueue. In the figure, entering the prep state causes
the HSM to disable its two subqueues named ”request” and”abort”; as a result,
in any substate of prep, the HSM can only receive STEP, DONE or TIMEOUT
messages. When it transitions to the active state, the exit action for prep re-
enables the ”abort” subqueue, which allows the HSM to respond also to STOP
messages while in any of the dur1, dur2, dur3 substates of the active state.

The figure also illustrates the use of timers. For instance, when the HSM
enters the dur1 substate, it starts a 5-second timer by sending a START(5)
request to the Timer service. When the timer expires, the Timer service sends
the TIMEOUT message back to the HSM, which causes it to transition to the
dur2 state. Upon entering dur2, the HSM starts a 300-second timer. If the HSM
receives a STOP message while in a substate of the active state, it cancels the
outstanding timer by sending a CANCEL message to the Timer service, and
transitions to the cleanup state4.

3.4 Event Logs

During execution, threads generate a stream of telemetry that is periodically
sent to Earth so that ground operators can assess the success of requested ac-
tivities and the health of various spacecraft subsystems. A key element of the
telemetry stream is an event log that contains a log of timestamped events that
happened on the spacecraft. Event logs are used by engineers to assess if the
system is behaving as designed, and are often checked (either manually or using
ad-hoc scripts) to verify that the HSM behavior satisfies expected properties. As
we discuss in a later subsection, in our approach, we provide a formal, declara-
tive notation (based on temporal logic) in which properties may be expressed,
and then the Daut runtime monitoring engine is used to check that the HSM
behaviors satisfy these properties. Figure 4 shows fragments of event logs from
two runs of the HSM. (In section 4.2, we describe how these runs are gener-
ated from test scenarios.) The number before each event denotes the time of the

4 In the interests of readability, the simplified HSM shown here does not handle the
case where a timer expires right when a CANCEL message is sent; the full HSM
handles this condition gracefully.

8

event.5 The log on the left shows a nominal run, where the HSM enters state
dur2 at time 1090 and starts a 300-second timer, which expires at time 1390,
after which the window completes nominally. The log on the right shows a run in
which a STOP request is sent to the HSM at time 1380, which causes it to abort
the window by canceling the timer and transitioning to the cleanup state. The
figure shows how the logs differ after time 1380, showing the different system
behaviors.

1085 : HSM EVR ENTER STATE(active)
1085 : IPC EVR QUEUE ENABLE(cbm,abort)
1085 : HSM EVR ENTER STATE(dur1)
1085 : TIM EVR STARTED(1090)
1090 : TIM EVR FIRED(1090)
1090 : IPC EVR RECV(cbm,transition,TIMEOUT)
1090 : HSM EVR EXIT STATE(dur1)
1090 : HSM EVR ENTER STATE(dur2)
1090 : TIM EVR STARTED(1390)
1390 : TIM EVR FIRED(1390)
1390 : IPC EVR RECV(cbm,transition,TIMEOUT)
1390 : HSM EVR EXIT STATE(dur2)
1390 : HSM EVR ENTER STATE(dur3)

1085 : HSM EVR ENTER STATE(active)
1085 : IPC EVR QUEUE ENABLE(cbm,abort)
1085 : HSM EVR ENTER STATE(dur1)
1085 : TIM EVR STARTED(1090)
1090 : TIM EVR FIRED(1090)
1090 : IPC EVR RECV(cbm,transition,TIMEOUT)
1090 : HSM EVR EXIT STATE(dur1)
1090 : HSM EVR ENTER STATE(dur2)
1090 : TIM EVR STARTED(1390)
1380 : IPC EVR RECV(cbm,abort,STOP)
1380 : HSM EVR EXIT STATE(dur2)
1380 : HSM EVR EXIT STATE(active)
1380 : TIM EVR CANCELED(1390)
1380 : HSM EVR ENTER STATE(cleanup)

Fig. 4. Sample event logs for two runs of the HSM in Fig 3

4 Modeling and Testing the Communications HSM

4.1 The Communications HSM in iHSM

Figure 5 shows how the Communications Behavior Manager (CBM) HSM shown
in Figure 3 is formalized in our iHSM notation. (In the interests of space, we
show only a few states; the others follow a similar pattern.) Lines 1–5 show
the definition of message types that are to be handled by the HSM. Lines 7-
35 define the state machine as the class CbmHsm extending the MslHsm class,
which itself extends the generic HSM class implementing our DSL. Line 8 defines
the three subqueue priorities, along with the capacity of each subqueue. Line 9
defines the window table. Line 10 defines the outermost top state of the HSM.
The handler for the ADD WIN message (line 13) results in a transition to the
in window state. Lines 17–20 define the prep state, which has entry and exit
actions. The entry action (line 18) results in the ”request” and ”abort” queues
being disabled when the state is entered, whereas the exit action (line 19) results
in the ”abort” queue being re-enabled. (Note that the ”request” queue stays
disabled.) The entry action for the xband prep state causes two messages to be
sent: the message START TRACK is sent to the Hga thread (corresponding to a
request for the high-gain antenna to start tracking Earth), and then the HSM

5 In our somewhat simplified execution model, we currently assume that entering and
exiting states does not take any time; thus several such related events have the same
timestamp.

9

sends a STEP message to itself. The thread will then receive this STEP message
and execute the transition on line 23, which causes the HSM to transition to
the xband cfg state. The entry action for the xband cfg state results in the HSM
sending (line 26) a TURN ON message to the Sdst thread. When it receives (line
28) the DONE reply from the Sdst, the HSM transitions to the active state. In
the interests of space and readability, we have shown only a simplified fragment
of the communications behavior HSM used on Curiosity. We have encoded the
full CBM HSM in our iHSM notation. (The full HSM consists of 45 states and
substates and over 130 transitions among these states.)

1 case object STEP extends CbmMessage("transition")
2 case object DONE extends CbmMessage("transition")
3 case object TIMEOUT extends CbmMessage("transition")
4 case object STOP extends CbmMessage("abort")
5 case class ADD WIN(start: Int, ...) extends CbmMessage("request")
6

7 class CbmHsm extends MslHsm {
8 queues(("transition", 3), ("abort", 1), ("request", 17))
9 var table = new WindowTable()

10 object top extends state() {}
11 object idle extends state(top, true) {
12 when {
13 case ADD WIN(..) ⇒ in window exec { table.add(..) }
14 }
15 }
16 object in window extends state(top) { }
17 object prep extends state(in window, true) {
18 entry { disable subqueues ("request", "abort") }
19 exit { enable subqueues("abort") }
20 }
21 object xband prep extends state(prep, true) {
22 entry { Hga ! START TRACK ; Self ! STEP }
23 when { case STEP ⇒ xband cfg }
24 }
25 object xband cfg extends state(prep) {
26 entry { Sdst ! TURN ON }
27 when {
28 case DONE ⇒ active
29 }
30 }
31 object active extends state(in window) {
32 when { case STOP ⇒ cleanup exec { Timer ! CANCEL } }
33 }
34 ...
35 }

Fig. 5. The CBM HSM expressed in iHSM

10

4.2 Extensible Test Scenarios

In order to test HSMs, we developed a notation for writing test cases. Our
notation allows users to specify test scenarios that result in certain messages
being sent to HSMs in the system at specified times. Figure 6 illustrates two such
test scenarios. The notation at(100) exec Cbm ! M indicates that the message M
is to be sent to the Cbm HSM at time 100. Note that, because our scenarios are
Scala code, we can easily define a local variable S and specify that 3 messages
be sent at specified times relative to S. The figure also illustrates how the use
of Scala allows us to conveniently define new scenarios as extensions of existing
scenarios using class inheritance. As shown, we define the stopTest scenario as an
extension of the hgaTest scenario by specifying that an additional STOP message
be sent to the HSM at time (S+510). Execution of these two scenarios results in
the logs shown in Figure 4.

class hgaTest extends TestScenario {
val S = 1000
at(S) exec Cbm ! SET BKID("TEST")
at(S+1) exec Cbm ! SET MODE(NORMAL)
at(S+2) exec Cbm ! ADD WIN(311,...)

}

class stopTest extends hgaTest {
at(S+510) exec Cbm ! STOP()

}

Fig. 6. Two sample test scenarios

4.3 Monitoring Temporal Properties

Next, we describe how to monitor HSMs using a monitoring framework that can
check temporal properties. Figure 7 shows two example properties for the CBM
HSM. The first property (lines 1–5) checks the state invariant that whenever
the HSM is in the prep state, the ”abort” subqueue is disabled. The predicate
Cbm.inState(re) returns true if the HSM Cbm is in a state whose name matches
the regular expression re. The second property (lines 7–13) checks that if a timer
has been started, then the HSM either waits for the timer to fire, or it cancels
the timer, before starting a new timer. The body of the class is an always-formula
(line 9). The function always takes as argument a partial function from events
to monitor states. In this case, whenever an TIM STARTED event is observed,
the monitor moves to a watch state, in which it waits for either a TIM FIRED or
a TIM CANCELED event, but declares an error if another TIM STARTED event
is seen before.

11

1 // In state prep, the ”abort” subqueue is disabled
2 class QueueCheck extends MSLMonitor {
3 invariant ("abortDisabled") {
4 Cbm.inState("prep") =⇒ !Cbm.isEnabled("abort")
5 }}
6

7 // Timer is not started unless previous timer has expired or been canceled
8 class TimerCheck extends MSLMonitor {
9 always {

10 case TIM STARTED() ⇒ watch {
11 case TIM FIRED() | TIM CANCELED() ⇒ ok
12 case TIM STARTED() ⇒ error("Timer restarted")
13 }}}

Fig. 7. Two temporal properties monitored

4.4 Derived Test Scenarios with Reactive Monitors

A key feature of our approach using the Daut framework is that monitors are
written in Scala, and thus monitor evaluation can execute any Scala code, includ-
ing sending of messages to the HSM being monitored. We refer to such monitors
as reactive monitors. Figure 8 shows an example of how a reactive monitor al-
lows us to express complex test scenarios in a compact and readable way. The
InjectStop monitor looks for an event indicating that an HSM has entered the
”active 1” state; and when this event is seen, it executes the code shown on line
4, which waits for 2 seconds and then sends a STOP message to the HSM. Note
that unlike the stopTest scenario test in Figure 6 above, which required that a
message be sent at a specified time, the use of a reactive monitor allows a mes-
sage to be sent when a monitored property becomes true, which makes it easier
to write test scenarios.

1 // 2 seconds after the HSM enters the ”active 2” state , send a STOP
2 class InjectStop extends MSLMonitor {
3 always {
4 case HSM ENTER STATE("active_1") ⇒ after(2) { Cbm ! STOP() }
5 }}

Fig. 8. A reactive monitor

4.5 Checking Timing Properties

In this section, we illustrate how reactive monitors allow us to easily analyze
the HSM design in order to check timing assumptions. Figure 9 shows an un-
timed monitor NoHgaReply that checks if a HGA START TRACK is followed by

12

a NO HGA REPLY. (This happens when the CBM HSM does not receive a reply
from the high-gain antenna in response to a start tracking request). The figure
also shows the reactive monitor InjectHgaDelay that waits for the HSM to enter
the prep xband hga state, and then injects a delay D (which is a parameter to
the monitor) before the hga track reply message is delivered to the HSM.

1 // Check if HGA tracking was started but no reply was received
2 class NoHgaReply extends MSLMonitor {
3 always {
4 case HGA START TRACK() ⇒ watch {
5 case NO HGA REPLY() ⇒ error
6 }}
7 }
8

9 // Delay reply from HGA by D seconds
10 class InjectHgaDelay(D: Int) extends MSLMonitor {
11 always {
12 case HSM ENTER STATE("prep_xband_hga") ⇒
13 Ipc . delay(D, "cbm", "hga_track_reply")
14 }}

Fig. 9. Timing monitors for the CBM case study

Next, in Figure 10, we show how we can use these monitors to check timing
assumptions. The figure shows a Scala method search which takes a time range
(lo, hi), and looks for the smallest value m in that range for which the provided
function f throws a RuntimeException. This is achieved by iterating over the value
of m (line 5) and calling f(m) in each iteration. If all iterations complete without
an exception, the method returns None indicating the search was unsuccessful.
However, as soon as an exception is encountered, the catch block (lines 7–9)
returns with the value of m that caused the exception.

The next method, findMinHgaTimeout uses this search method to find the
smallest delay d that can be injected into the system (using the InjectHgaDelay
reactive monitor) that results in a violation of the property NoHgaReply. As
shown in the figure, the method searches for a delay in the range 400..500 (line
13), and passes in a partial function that, given a delay value d, runs the hgaTest
scenario with property monitor NoHgaReply and an instance of reactive monitor
InjectHgaDelay(d). It then checks the value returned by the search method (lines
15–17). If the value returned is Some(m), it reports the value that caused the
failure; else if the value is None, it reports that no failure was found. Running
this search for the CBM HSM revealed that a delay of 409 seconds or longer
results in a violation of the NoHgaReply property.

13

1 // Find the least value of m for which f(m) throws an exception
2 def search(lo : Int , hi : Int)(f : PartialFunction [Int ,Unit]): Option[Int] = {
3 var m = lo
4 try {
5 while (m < hi) { f(m) ; m += 1 }
6 None
7 } catch {
8 case e: RuntimeException ⇒ Some(m)
9 }}

10

11 // Find the least delay that results in violation of NoHgaReply
12 def findMinHgaTimeout {
13 search(400, 500) {
14 case d ⇒ run(new hgaTest, new NoHgaReply, new InjectHgaDelay(d))
15 } match {
16 case Some(m) ⇒ println("Detected failure with value " + m)
17 case None ⇒ println ("No failures found")
18 }
19 }

Fig. 10. Functions for finding smallest delay that causes NoHgaReply to fail

5 Conclusion

In this paper, we have built upon our previous work using an internal DSL in
Scala for writing HSMs. We have described how this DSL is used to model sys-
tems with many HSMs, each implemented by a thread, which interact with each
other and with devices and system services using asynchronous messaging. We
have applied our ideas to a case study modeling a critical HSM that manages
communications of the Curiosity rover with Earth. We have shown how to check
that these HSMs satisfy properties written in a temporal logic, by integrating
a monitoring framework (also written in Scala) that processes event logs gener-
ated by the HSMs. Finally, we have described a notation for writing high-level
test specifications, which makes it convenient to write complex test cases by
specifying a set of stimuli that are to be provided to the system when various
constraints are satisfied. Our test specifications are expressed as Scala classes,
which allows tests to be extended using inheritance, making it easy to develop
multiple test variants from a baseline scenario. Our work is based on using a
modern high-level programming language for modeling, testing and monitoring
spacecraft software. We are working on making our test specification language
more expressive by allowing more complex constraints (and then using an SMT
solver to generate test instances). Work on visualizing HSMs from the Scala
source code is in progress. We are also investigating more powerful verification
techniques, such as model checking and theorem-proving (using the Viper frame-
work [18]) that can be used to formally verify HSM properties.

14

Acknowledgments. The research performed was carried out at Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References

1. Akka FSMs. http://doc.akka.io/docs/akka/current/scala/fsm.html

2. Unified Modeling Language. http://www.uml.org, accessed: 2017-06-08

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: FM. pp.
68–84 (2012)

4. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for trace analysis. In:
Proc. of the 17th International Symposium on Formal Methods (FM’11). LNCS,
vol. 6664, pp. 57–72 (2011)

5. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods in System Design (2015),
http://link.springer.com/article/10.1007/s10703-015-0222-7

6. Broy, M., Havelund, K., Kumar, R.: Towards a unified view of modeling and pro-
gramming. In: Margaria, T., Steffen, B. (eds.) 7th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Corfu, Greece, October 10-14. LNCS, vol. 9953. Springer (2016)

7. Deligiannis, P., Donaldson, A.F., Ketema, J., Lal, A., Thomson, P.: Asyn-
chronous programming, analysis and testing with state machines. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 154–164. PLDI ’15, ACM, New York, NY, USA (2015),
http://doi.acm.org/10.1145/2737924.2737996

8. Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey, D.: P: Safe
asynchronous event-driven programming. In: Proceedings of PLDI ’13. pp. 321–332
(2013), http://doi.acm.org/10.1145/2491956.2462184

9. Drusinsky, D.: Modeling and Verification using UML Statecharts. Elsevier (2006),
iSBN-13: 978-0-7506-7949-7, 400 pages

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston, MA, USA (1995)

11. Havelund, K.: Closing the gap between specification and programming: VDM++

and Scala. In: Korovina, M., Voronkov, A. (eds.) HOWARD-60: Higher-Order
Workshop on Automated Runtime Verification and Debugging. EasyChair Pro-
ceedings, vol. 1 (December 2011), manchester, UK.

12. Havelund, K.: Data automata in Scala. In: Proc. of the 8th International Sympo-
sium on Theoretical Aspects of Software Engineering (TASE’14) (2014)

13. Havelund, K.: Rule-based runtime verification revisited. International Journal on
Software Tools for Technology Transfer 17(2), 143–170 (2015)

14. Havelund, K., Joshi, R.: Modeling and monitoring of hierarchical state machines
in Scala. In preparation

15. Havelund, K., Visser, W.: Program model checking as a new trend. STTT 4(1),
8–20 (2002)

16. Kauffman, S., Havelund, K., Joshi, R.: nfer – a notation and system for infer-
ring event stream abstractions. In: 16th Int. Conference on Runtime Verification
(RV’16), Madrid, Spain. LNCS, vol. 10012, pp. 235–250 (2016)

15

17. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. J Software Tools for Technology Transfer pp. 1–41
(2011), http://dx.doi.org/10.1007/s10009-011-0198-6

18. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 9583, pp. 41–
62. Springer-Verlag (2016)

19. Samek, M.: Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes, MA, USA, 2 edn. (2009)

16

